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Executive Summary 

Energy-demand options for reducing household power consumption have been 
discussed as valuable and cost-effective options complementary to the more 
expensive energy supply measures required to reduce the carbon footprint of 
the residential energy sector. While power utilities are exploring opportunities 
for energy conservation coming from consumers' behavioral change, new 
societal trends, like digitalization, and socio-economic contexts, as the one 
following the COVID-19 pandemic, have profoundly affected the way households 
consume energy, and not necessarily steering consumption towards lower 
values. 

This report overviews the opportunities offered by both traditional and novel 
machine learning techniques to assess the causal outcome of large-scale 
behavioral interventions affecting power consumption. By applying these 
methods to the large smart data ensembles collected in natural experimental 
contexts, like those set up by utilities or even those naturally arisen by the 
progressive application of lockdown policies during the COVID-19 pandemic, it 
is possible to explore a variety of response models to different behavioral levers, 
while trying to unpack the heterogeneity and to guide the policy discussion. 

Different feedback mechanisms have been devised with varying level of success 
in affecting consumption. The causal effect of such interventions has been 
traditionally estimated with econometric techniques. More recently, thanks to 
the availability of large data ensemble from smart meters, machine learning 
brings new opportunities for causal inference analyses. 

This work reviews available machine learning techniques that can be used to 
leverage on smart meter datasets for impact evaluation. Concepts like 
forecasting, clustering, explainable machine learning, and causal forests are 
presented for this purpose and their benefits and limits emphasized.  

Three case studies corresponding to natural and artificial behavioral 
interventions monitored via smart meters in Italy and Poland showcase a variety 
of traditional and novel techniques used to analyze the corresponding smart 
meter datasets and uncover patterns of household-behavioral changes in power 
consumption associable with those interventions. 

Overall, novel large-scale data-driven assessments of behavioral intervention 
suggest energy savings of few percentage points. Nonetheless high 
heterogeneity emerges from the data. Machine learning can help to better 
understand this heterogeneity. In general, more data and experiments are 
needed to further refine the match between different classes of households and 
the most effective behavioral intervention, as well as to scale the insights to 
other regional contexts.
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1. Introduction 

Europe has set ambitious targets for energy transition and decarbonization, with 
the aim to develop a sustainable, low-carbon society. Existing policy packages, 
such as the 2030 energy and climate strategy and the EU Green Deal, have 
emphasized a variety of proposed tools. Energy-demand options have been 
discussed as valuable and cost-effective options complementary to the more 
expensive energy supply measures required to reduce the carbon footprint of 
the residential energy sector. Power utilities are thus exploring opportunities for 
energy conservation coming from consumers' behavioral change. At the same 
time, new trends, like digitalization, and socio-economic contexts, as the one 
following the COVID-19 pandemic, have profoundly affected the way households 
consume energy, and not necessarily steering consumption towards lower 
values. 

Avoiding inefficient behaviors and appliances in households (HHs) have multiple 
benefits. On one hand, households can reduce their energy bills by reducing or 
shifting consumption. On the other, power providers can avoid potentially costly 
and carbon-intensive on-peak production, as well as investments in networks 
and plants to sustain otherwise higher future peak demands. Thanks to the 
increasing deployment of smart meters, i.e. electronic devices that record 
consumption of electric energy with high frequency for monitoring and billing 
purposes, new possibilities for consumers' engagement and data-driven policies 
arise. Smart meters are indeed being deployed at a very fast rate, with almost 
225 million devices expected to be operational in the EU in 2024. Such 
technology has the capability of recording and communicating energy 
consumption levels at a high-temporal resolution (e.g., 15 minutes or less), thus 
enabling consumers with an on-hand grasp of their energy bills. 

Policy makers have promoted different types of behavioral programs, claiming 
their high potential and cost effectiveness for energy conservation. Combined 
with the digital support of smart meters, it is argued that users’ behavior can be 
nudged towards better environmental choices by overcoming limiting decision 
factors such as limited attention, present bias and limited salience (Allcott and 
Mullainathan 2010). However, critics remain due to mixed empirical findings 
(Andor et al. 2022). 

This report overviews the opportunities offered by both traditional and novel 
machine learning techniques to assess the causal outcome of large-scale 
behavioral interventions. By applying these methods to the large smart data 
ensembles collected in natural experimental contexts, like those set up by 
utilities or even those naturally arisen by the progressive application of lockdown 
policies during the COVID-19 pandemic, it is possible to explore a variety of 
response models to different behavioral levers, while trying to unpack the 
emerging heterogeneity. 
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1.1 Policy (evaluation) context 

Under the Directive (EU) 2018/2002 (“Directive (EU) 2018/2002 of the European 
Parliament and of the Council of 11 December 2018 Amending Directive 
2012/27/EU on Energy Efficiency, OJ l 328” 21.12.2018), the European Union set 
an energy efficiency target for reducing energy consumption in 2030 by at least 
32.5% compared to 2007 consumption projections for 2030. To this end, a wide 
range of technological, economic, and behavioral changes need to be 
implemented across the Union. The regulatory requirements concerning the 
latter type of changes are provided by art. 12 of the Energy Efficiency Directive 
((“Directive 2012/27/EU of the European Parliament and of the Council of 25 
October 2012 on Energy Efficiency, Amending Directives 2009/125/EC and 
2010/30/EU and Repealing Directives 2004/8/EC and 2006/32/EC, OJ l 315” 
14.11.2012) 2012/27/EU, further: EED). It obliges the Member States to 
implement instruments and policies to promote behavioral change of consumers 
towards an efficient use of energy. The Directive enumerates the following policy 
instruments in this area: 

• fiscal incentives; 

• access to finance, grants, or subsidies; 

• information provision; 

• exemplary projects; 

• workplace activities. 

The cost-effectiveness of these instruments may vary, but it is important that 
these are carefully evaluated before making rational policy choices. In this 
context, the valuation of environmental effects (here: energy savings) is 
indispensable for policy making and should be based on well-established 
methods (Mickwitz 2003). Annex V to the EED specifies the following possible 
methods for calculating energy savings1: 

• deemed savings – referring to results of previous independently 
monitored energy improvements in similar installations; 

• metered savings – referring to the measured reduction in energy use; 

• scaled savings – referring to engineering estimates (independent 
benchmarks); 

                                           

1  The listed methods concern behavior measures other than those arising from 
taxation. With regard to calculating energy savings arising from taxation measures, 
Annex V to the EED requires calculation methods to ensure that: (1) Only energy 
savings from taxation measures exceeding the minimum levels of taxation 
applicable to fuels as required in Council Directive 2003/96/EC or 2006/112/EC are 
considered; (2) price elasticities shall represent the responsiveness of energy 
demand to price changes; (3) the energy savings from accompanying taxation policy 
instruments shall be accounted separately. Calculating energy savings arising from 
taxation measures is not within the scope of this Deliverable. 
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• surveyed savings – referring to changes in consumer behavior. 

Calculating energy savings from large-scale behavior change entails several 
challenges. First, the materiality of a change in behavior is more problematic to 
show than in the case-technical changes, such as a replacement of appliances 
for more energy-efficient ones. Second, behavior changes can be easily reversed, 
so determining the lifetime of the measures and the amount of savings over time 
is inherently linked with a high degree of uncertainty. In this perspective, the 
European Commission (EC) stresses that behavioral measures require specific 
evaluation methods (Appendix VI to the Commission Recommendation (EU) 
2019/1658 (“Commission Recommendation (EU) 2019/1658 of 25 September 
2019 on Transposing the Energy Savings Obligations Under the Energy Efficiency 
Directive, OJ l 275” 28.10.2019)). The EC recommends Member States to use one 
of the three approaches: 

• randomized controlled trials; 

• quasi-experimental approaches; 

• metering or monitoring energy consumption. 

They all have the same objective, which is the calculation of energy savings, but 
each approach offers different advantages and is linked with different limitations 
(Table 1). Apart from different costs and level of operational difficulty in 
implementation, these methods entail also diverse levels of risk of confounding 
(mixing or blurring of the effects), i.e. suggesting an association between the 
behavioral measure and energy savings where none exists or masks a true 
association (JK, C, and D 2018). 
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Table 1:  Comparison of methods for evaluating energy savings from 
behavioral measures according to the Commission 
Recommendation (EU) 2019/1658. 

Method 

Method  

characteristic 

Randomized 

controlled trials  

Quasi-experimental 

approach 

Metering or 

monitoring energy 

consumption 

Random allocation of 

participants into 

groups: 

• a treatment 

group that 

experiences an 

intervention  

• a control group 

that does not 

receive the 

intervention 

Yes No. Treatment group 

is compared with a 

comparison group, 

which is not chosen 

randomly from the 

same population as 

treatment group.  

The allocation of 

participants to a 

treatment group and 

comparison group 

could be based on, 

for instance, self-

selection, or 

according to program 

owner decisions. 

No. Energy savings 

are evaluated by 

metering or 

monitoring the 

participants' energy 

consumption before 

and after the 

intervention. 

Level of evidence on 

the impacts of the 

behavioral measures 

Highest – most 

definitive casual 

inference 

Medium Lowest 

Level of risk of 

confounding  

Not likely 2  Likely Very likely 

Level of difficulty in 

operational 

implementation 

Highest Medium-high Lowest 

In all methods, smart metering data is highly useful. It offers a less expensive, 
faster, and more reliable calculation of energy savings from behavioral 
measures, as compared to methods based on manually collected energy 
consumption data of lower temporal granularity. Smart meters offer also a 
                                           

2  In some cases confounding can occur even in a randomized control trial, e.g. due 
to knowledge on participant allocation to different study groups by the researchers 
(Manson et al. 2016). 
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higher precision of energy savings calculation, which is of paramount 
importance in view of the relatively low reductions of energy use due to such 
measures – typically less than 3% (Stewart, Todd, and Kurnik 2020). Data from 
smart meters can also contribute to a better understanding of the common 
barriers for promotion of energy efficient behaviors in households. In particular, 
smart meter data can provide reliable evidence on: 

• effectiveness of specific components of behavioral measures – through 
assessing impacts of differed treatments on household energy 
consumption; 

• lifetime of energy savings – through assessing the length of time during 
which a behavioral measure generates energy savings; 

• persistence of energy savings – through assessing the change in savings 
throughout their lifetime; 

• effectiveness of behavioral measures on energy consumption of different 
households – though assessing impacts of the treatment on households 
with different socio-economic or technical characteristics. 

1.2 Overview 

Section 2 offers a literature review of behavioral interventions studies where 
households have been incentivized to change their power consumption trends 
to save energy. Different feedback mechanisms have been devised with varying 
level of success in affecting consumption. The causal effect of such interventions 
has been traditionally estimated with econometric techniques. More recently, 
thanks to the availability of large data ensemble from smart meters, machine 
learning brings new opportunities for causal inference analyses.  

Section 3 goes into greater detail regarding available machine learning 
techniques that can be used to explore smart meter datasets for impact 
evaluation. Within this perspective, concepts like forecasting, clustering, 
explainable machine learning, and causal forests are presented for this purpose 
and their benefits emphasized. 

Section 4, 5 and 6 present three case studies where a variety of traditional and 
novel techniques are showcased in uncovering patterns of household-behavioral 
changes in power consumption associable with both natural and artificial 
interventions. 

Finally, Section 7 concludes the report with a discussion on the relevance of this 
work and illustration of future directions.  
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2. Literature review 

2.1 Exogenous intervention due to COVID-19 

The restrictions in mobility that has followed the COVID-19 pandemic have 
influenced not only the level of the electricity demand in Europe, but also 
consumption patterns (Narajewski and Ziel 2020), which reflect the various rules 
in places on different European countries (Bahmanyar, Estebsari, and Ernst 
2020). A study of smart meters data from 280 homes in Cornwall (Menneer et 
al. 2021), UK, found increase in gas, water and electricity usage, with electricity 
consumption that shift later in the day, reflecting people getting up later and 
spending more time at home. Other studies in the literature (Menneer et al. 
2021; Cuerdo-Vilches, Navas-Martín, and Oteiza 2021) underline how the 
economic impact of the increased consumption affects people in 
socioeconomically disadvantaged areas, adding to the other inequitable impacts 
of the virus. During the first lockdown in 2020, economic activities have severely 
reduced, and this reduction is mirrored with a reduction in electricity market 
consumption (Fezzi and Fanghella 2020; Soava et al. 2021). 

COVID lockdowns provide a set of natural experiments to explore the effects on 
electricity consumption of work and study-from-home. In Li et al. (2021) data 
from 390 apartments in New York City (NYC) were analyzed with regression 
models to find how COVID-19 cases together with the weather influence power 
consumption loads. With Monte Carlo simulations it was possible to estimate 
how the peak demand would dramatically increase (almost double up) if future 
emergencies would lead to a stay-at-home order in a similar region to NYC, 
during the warmest months. 

Work and study-from-home are public responses adopted to face the COVID-19 
pandemic emergency, and their effects on consumption are worth being 
analyzed in themselves, considering that other lockdown may be taken place in 
the future in response to COVID-19, other pandemics, or other crisis. At the 
same time teleworking is not only a response to a pandemic, but it is also 
perceived as a more sustainable mode of working (for those jobs that are 
compatible) as it may be beneficial for employee lifestyle, it reduces costs for 
the companies, and it should have environmental benefits. For example, in 
Tenailleau et al. (2021), the authors find that in the medium-sized European city 
of Besançon (France), a 1% increase in teleworking leads to an average reduction 
in emission of –0.42%. The assessment of teleworking influence on energy 
consumption needs to take into account the increased usage in the household, 
as well as consumption reduction in the office, reduction of commuting, and all 
the complex rebound effects that a shift in the location of workers may imply 
(O’Brien and Aliabadi 2020). The literature shows no consensus on the estimates 
of energy saving due to teleworking:  some studies point to a net saving, while 
others claim a more modest effect when non-work travel or home energy use are 
also considered (Hook et al. 2020). 



 

Deliverable 4.2 Impact assessment of household-level behavioral 
interventions via smart-meter data 

 

 

15 

Among other methods, clustering analysis has been applied to find the effect of 
COVID-19 on consumption. In García et al. (2021) the authors consider 
consumption of both residential and non-residential consumers from the town 
of Manzanilla (Huelva, Spain), to identify which categories increased/decreased 
their consumption during the lockdown. While residential consumption 
increased by about 15% during full lockdown and 7.5% during the reopening 
period, for non-residential consumers, despite an overall decrease in 
consumption, five different consumption profiles were found. Clustering 
techniques are applied also in Abdeen et al. (2021) for the study of different 
consumption behaviors before and during COVID lockdown in Ottawa, Canada. 
Authors estimated that electricity use of homes for cooling is not significantly 
affected by COVID-induced behaviors. Considering average electricity daily 
profiles, authors find that there are differences among different months, 
seasons, and day types in the lockdown influence over electricity consumption. 
In section 4.1of this report, we apply clustering methods to unravel the change 
in power consumption patterns during the first COVID-19 lockdown in Italy. 

2.2 Behavioral interventions 

People’s perceptions of energy consumption can have significant discrepancies 
with reality (Attari et al. 2010). In particular, low-energy activities tend to be 
overestimated and high-energy activities tend to be largely underestimated. This 
justifies the exploration of behavioral interventions, or nudges, to promote lower 
energy use, more environmentally friendly decisions, and more generally 
virtuous behaviors (Sunstein 2021). So far studies have mostly looked at 
empirical evidence for social comparison interventions (Allcott 2011) and 
information feedback type of programs (Andor and Fels 2018). 

2.2.1 Social feedback 

In the last decade, electricity providers have been sending Home Energy Reports 
(HERs) providing a social comparison feedback to customers to encourage 
energy savings. HERs were first popularized by Opower in the USA beginning in 
2008, based on the results of a field experiment that showed how reports are 
effective in promoting energy conservation (Schultz et al. 2007). HERs typically 
consist of a descriptive part, in which household consumption is compared with 
those of neighbors, or families with similar characteristics, while the second part 
is an injunctive feedback with social approval for energy saving (Bonan et al. 
2020). 

A large field of literature is dedicated to empirically estimate the effects of 
nudges in encouraging energy conservation. The first seminal works on HERs 
focus on the effectiveness of the Opower program in the USA, which consists on 
repeatedly sending HERs to more than six million households throughout the 
country. Allcott and Rogers (Allcott and Rogers 2014) are among the first to 
study the outcome of the program. Using linear regression, they find a reduction 
in electricity consumption in the days after the reception (until around 10 days), 
with a subsequent decrease in savings. After more than four reports, the effect 
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of the individual report is weaker, but overall, the repetition of the treatment 
leads to a consistent reduction in consumption. 

Multiple seminal studies (Allcott 2011) on the effects of Opower HERs in the USA 
show a reduction in electricity consumption of around 2% or more: 211 
independent RCTs conducted in the USA by Opower find a reduction between 
0.81% and 2.55% across states (Jachimowicz et al. 2018), and the electricity 
savings are confirmed not only by the Opower program (Henry, Ferraro, and 
Kontoleon 2019). 

However, these results are context-dependent: they may be subject to site 
selection bias (i.e. the probability of adopting or evaluating a program is not 
independent from its impacts (Allcott 2015)), and in general for European 
countries the effect size of similar HER programs are much lower (i.e. 0.7% of 
reduction was found in Germany (Mark A. Andor et al. 2020)). 

2.2.2 Consumption feedback 

Programs providing more frequent or salient consumption information feedback 
have been also a subject of field experiments. On one hand, information 
feedback seems to strengthen the price elasticity of demand, making 
interventions like dynamic pricing more effective (Jessoe and Rapson 2014). On 
the other, it supposedly induces electricity savings (Schleich et al. 2013; Attari 
et al. 2014; Lynham et al. 2016). This result is driven both by the process of 
learning about the energy consumption of different activities as well as of 
reminding of one’s energy use, with possibly the former being a stronger driver 
(Lynham et al. 2016). 

Regarding relative average consumption reductions, two papers performed a 
meta-analysis of the many available studies (Karlin, Zinger, and Ford 2015; 
McKerracher and Torriti 2013). We refer the readers to the references therein for 
an exhaustive coverage of the literature on the topic. Karlin, Zinger, and Ford 
(2015) consider 42 studies with an effect size on power consumption ranging 
from -8% to above 20%. Their meta-model estimates an overall reduction 
between 4% and 12%, depending on different aggregation schemes. Several 
treatment variables moderate this relationship, including frequency of feedback, 
medium, comparison message, duration, and combination with other 
interventions (e.g., goal, incentive). Feedback turns out to be more effective 
especially when combined with goal-setting or external incentive interventions, 
and is somewhat brief (e.g., less than 3 months) or quite long (e.g., longer than 
1 year). McKerracher and Torriti (2013) come up with more conservative 
estimates in their meta-analysis. Especially focusing on the lower estimates of 
more recent studies with larger sample sizes and more representative sample 
selection and recruitment methods, the authors argue that a realistic, large-scale 
conservation effect from feedback is in the range of 3-5%.  

These estimates are significantly lower than what suggested in earlier studies, 
but are supposed to be more robust, given the very large sample sizes of recent 
trials. It should be remarked that even if relative reductions do not appear to be 
large, they are in fact considered very significant from the industry view point. 
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If these results can be generalized, given the large share of energy consumed in 
the residential and commercial sector, they can go a long way in improving 
energy efficiency, especially in the light of the very low-price elasticities observed 
in residential energy. Among available types of feedback, real-time household-
level feedback seems to be the most effective in overcoming imperfect 
information and inattention biases, with potentially large conservation effects 
(Tiefenbeck et al. 2016). 

As technology becomes cheaper and consumption data more readily available, 
interest in high-frequency feedback has been rising. Houde et al. (2013) takes 
advantage of hourly data from a long-lasting real-time feedback field experiment 
and look also into time-of-day reduction effects and persistence of the effect 
over time. In this case, access to feedback leads to an average reduction in 
household electricity consumption of 5.7%, persisting for up to four weeks. 
Another experiment combined in-home displays for real-time feedback with 
interventions involving moral suasion and economic incentives (Ito, Ida, and 
Tanaka 2018). Moral suasion led to 8% short-run power usage reductions, while 
economic incentives doubled reductions and made them more persistent, 
supporting the synergy between information and dynamic pricing (Ito, Ida, and 
Tanaka 2018). 

Despite the magnitude of the consumption savings, a recurring finding is the 
high heterogeneity in the impact estimates. Apart from differences in 
experimental setups, both socio-demographic and psychological variables can 
explain the variety in consumption levels and response to information feedback 
(Abrahamse and Steg 2009). Nonetheless, often the relationship between these 
variables and treatment effects is not evident (Houde et al. 2013), and larger 
studies are still required (Andor et al.2022). 

2.2.3 Interventions for specific end-uses 

Besides nudges for achieving energy conservation, some programs specifically 
focus on reducing heating or cooling. In Myers and Souza (2020) authors study 
the effect of HERs repeatedly mailed to household with nudge for reducing 
heating. The experiment is introduced in a college resident, where tenants do 
not pay for the energy bills. Authors find almost no behavioral changes for 
heating demand, suggesting that behavioral interventions may not be sufficient 
in the absence of monetary incentives. On the contrary, despite little monetary 
incentives, an intervention to reduce the indoor temperature in a Swiss canton 
was successful (Kandul, Lang, and Lanz 2020): even though building-level 
heating costs are shared across flats, the field experiment estimates a reduction 
of average indoor temperature of −0.28∘𝐶𝐶. In another field experiment conducted 
in a graduate residence at the National University of Singapore (Brülisauer et al. 
2020) authors provide appliance-specific feedback on electricity consumption 
from air-conditioning usage only, achieving a reduced electricity consumption 
from air-conditioning of 17%. 

Other types of behavioral intervention (Burkhardt, Gillingham, and Kopalle 2019) 
focus on encouraging energy conservation during peak load days (in particular 
reducing air conditioning on hot summer days) while electricity cost is reduced 
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when there is abundant renewable generation, to foster electric vehicles load in 
these times. The purchase of green energy is another action that should be 
encouraged; presenting green energy as default option, for both business and 
private sectors, leads to an 80% of customers to keep the green option, in a 
stable way for at least 4 years (Liebe, Gewinner, and Diekmann 2021). 

2.3 Machine learning for causal inference 

The literature offers well-established statistical and econometric approaches and 
tools to determine the causal link between an intervention and its effect on some 
outcome of interest (Angrist and Pischke 2008). At the core of the problem lies 
the prediction of a counterfactual, i.e., what would have happened if the 
individuals treated with an intervention had not been treated. The control group 
of a well-designed randomized experiment offers a counterfactual of the highest 
quality, as potential confounding factors cancel out when comparing treated and 
non-treated groups. Unfortunately, a perfectly randomized experiment at the 
desired scale is not always socially, technically or economically feasible. 

Several tools have been developed to deal with natural or other types of 
experiments that are not perfectly randomized. These include linear regressions, 
instrumental variables, regression discontinuities, and differences-in-differences 
(Varian 2016). 

Machine learning (ML) is a field of study of computer algorithms that learn 
through experience without being explicitly programmed (Samuel 1967). 
Different categories of ML can be used depending on the problem, such as 
classification, regression, clustering, and reinforcement problem (Alzubi et al. 
2018). ML enters the picture of causal inference as an additional tool to compute 
the counterfactual needed to estimate the causal effect of an intervention. Its 
benefits are particularly relevant with large amount of data, like in the case of 
smart meters readings. First, traditional methods might not be as 
computationally efficient as ML techniques to manipulate big data. Second, 
machine learning techniques offer more flexible models to capture non-linear 
relationships than traditional linear models. Third, ML can be useful in 
identifying features that are more relevant among the possibly many available 
(Varian 2016). 

Causal inference is one of the most promising areas of collaboration between 
ML and econometrics (Varian 2014; Mullainathan and Spiess 2017). Two aspects 
where ML can offer improvements over traditional approaches are predictive 
modeling and model uncertainty quantification. First, a good prediction of a 
counterfactual allows for a better estimation of the average treatment effect, and 
most ML tools are focused on optimizing prediction accuracy. Second, ML is 
associated with running a large number of alternative specifications, it helps to 
separate the data ensemble in meaningful subspaces with peculiar 
characteristics and relationships, and it often leverages on non-parametric 
methods for quantifying uncertainties (e.g. via bootstrapping). ML can thus offer 
valid alternatives to characterize uncertainties and explore heterogeneities of 
causal inferences. Nonetheless, we should remember that no matter how 
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sophisticated the causal estimation strategy is, eventually a randomized 
controlled trial remains the first-best way to validate its accuracy. 

In the following sections, we present several potential methods and applications 
of ML to the problem of estimating the impact on energy conservation of 
behavioral interventions. Eventually, causal inference is conducive to empirically 
based policy making, and machine learning can help to optimize such data-
driven decision-making (Athey 2017). 
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3. Novel impact evaluation methods 

3.1 Counterfactual forecasting 

In settings where for some reasons it is not possible to perform randomized 
control trials, as with observational studies, it is crucial to find alternative ways 
to deduce counterfactuals for the individual treatments. Many studies overcome 
the problems of a missing control group with counterfactual prediction, often 
obtained with machine learning approaches (Abrell, Kosch, and Rausch 2021). 
Comparing results obtained from randomized experiments for electricity 
consumers with those obtained with prediction algorithms, counterfactual 
forecasting replicates the treatment effects obtained with RCTs (Brian C. Prest 
and Palmer 2021; Burkhardt, Gillingham, and Kopalle 2019). 

In the context of a natural experiment, like the first COVID lockdown, forecasting 
is the only way to build a counterfactual scenario to compare with; for example, 
in Granella et al. (2021) machine learning tools have been used to estimate air 
pollution reduction during the lockdown by comparing the time series of 
concentration of 𝑃𝑃𝑀𝑀2.4 and 𝑁𝑁𝑂𝑂2 with the values obtained by the model (that had 
been trained on historical data, from 2012 to 2019). 

In Burlig et al. (2020) authors estimate energy savings obtained with energy 
efficiency upgrades in K–12 schools in California. They estimate with both a 
panel fixed effects approach and a machine learning one, with the second giving 
more accurate results. They finally studied the response heterogeneity but they 
could not identify school characteristics that systematically predict a better 
response. 

Machine learning algorithms can accurately predict counterfactuals, leading to 
an estimation of treatment effect heterogeneity (Section 3.4) also in studies with 
staggered treatments. In Souza (2019), the author underlines that rich data 
availability allows for an accurate prediction of counterfactual, leading to a good 
recovering of treatment effect, and he successfully applied the approach to 
evaluate an energy efficiency program in the US. 

3.1.1 Power load forecasting 

To study the effect of behavioral intervention using smart meter data, the 
problem of computing counterfactual is related to that of electric load 
forecasting. The forecasting of electricity consumption is an important problem, 
very relevant for industries and academia. It is relevant at different scales, from 
hourly forecasting to long-term, aggregate consumption (Hong and Fan 2016). 

Hourly electricity demand at an aggregate level presents recurrent patterns at a 
daily, weekly, and yearly frequency. Methods based on Fourier analysis achieve 
good results in predicting both short-term (hour or day ahead) and long-term 
(year-ahead) predictions (Yukseltan, Yucekaya, and Bilge 2020). It is important 
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to have at least a two-year observation period to make long-term prediction. It 
is also fundamental to set aside a time interval for validation of prediction. 

Prophet is a procedure for time series forecasting developed by Facebook, with 
available open-source implementations in Python and R. Time series are forecast 
with an additive model where non-linear trends are fit with yearly, weekly, and 
daily seasonality, plus holiday effects. It works best with time series that have 
strong seasonal effects and several seasons of historical data. The algorithm can 
automatically detect trends and change point in the data; season components 
are modeled with Fourier series. In scientific literature Prophet is widely applied 
to forecast time series in different fields; for electricity market prediction, it is 
suitable to predict short- or long-term aggregate load demand of a city, e.g. 
Chicago (Parizad and Hatziadoniu 2021), or a country, e.g. Kuwait (Almazrouee, 
Almeshal, Almutairi, Alenezi, Alhajeri, and Alshammari 2020; Almazrouee, 
Almeshal, Almutairi, Alenezi, and Alhajeri 2020). Prophet is used also for the 
forecast of buildings consumption, like shopping malls and office buildings 
(Gong et al. 2020). 

While prediction of load demand at aggregate levels achieves good results when 
enough historical data is available, the prediction of single tenants' consumption 
is subject to a greater variability in the time series as well as in the forecast 
accuracy (Shapi, Ramli, and Awalin 2021). Merging residential buildings together 
and comparing different methods is recommended: in Panigrahi (2020) the 
author compared the performance of Autoregressive Integrated Moving Average 
with Explanatory Variable (ARIMAX), Seasonal Autoregressive Integrated Moving 
Average with Explanatory Variable (SARIMAX), PROPHET and Long-Short Term 
Memory (LSTM) for forecasting average energy demand of a group of residential 
buildings in London, finding that LSTM performs best. Comparing algorithms is 
nevertheless not so trivial, and new approaches to load forecasting keep being 
applied. In general, the granularity and the time-horizon influence the 
effectiveness of the forecast: in Oreshkin et al. (2019) the N-beats neural network 
has been used to forecast mid-term electricity load (with monthly granularity and 
a forecast horizon of 12 months). One week of learning data to forecast one day 
is achieved with Temporal Fusion Transformers in Lim et al. (2021). Finally, 
different models should be merged together to achieve even better accuracy via 
models ensembles (C. Li et al. 2019). 

Machine learning algorithms that were not designed for time series can be 
extended to time series forecasting. XGBoost (T. Chen and Guestrin 2016) is an 
algorithm which predicts the future values of a time series based on selected 
temporal features extracted from the data. Despite that the algorithm was not 
designed for time series, it can be successfully applied to temporal forecasting 
whenever the temporal features extracted from the data are meaningful for 
predicting the signal. On one hand, the main limitation of XGBoost is the 
difficulty in predicting trends. On the other hand, it offers the advantage of 
knowing which features are important for prediction. For example, the weather 
is increasingly impacting electricity demand and is therefore an import predictor 
for power load (Staffell and Pfenninger 2018). 

In summary, to perform time series forecasting it is important to properly 
preprocess data (depending on the model adopted, normalization may not be 
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necessary), divide the data in training and validation part (historical forecast are 
useful to assess the validity of the model), include relevant covariates when 
available (e.g. the weather), and apply different methods to check the best 
performance in the specific dataset, eventually applying more than one model 
together. The model could be as simple as a linear regression, to the classical 
ARIMA, the Facebook Prophet algorithms, or more advanced neural network 
models. For all of these functionalities open-source implementations can be 
found, like DARTS in Python (Herzen et al. 2021). 

3.2 Clustering 

Availability of hourly consumption data can provide further insights on how 
people behave. Machine learning, and in particular clustering, has been applied 
in the past to better understand patterns of consumption. Although several 
approaches are documented (Y. Wang et al. 2015), some are of more immediate 
application and interpretation, like the one by Kwac, Flora, and Rajagopal (2014), 
focusing on the direct clustering of normalized load shapes. 

Clustering have mostly been used in the context of static load profiling rather 
than for detecting behavioral changes. More recently, clustering has been 
applied also for detecting behavioral changes. For example, clustering was used 
to assess the impact of natural experiments such as the COVID19 pandemic and 
subsequent lockdown (García et al. 2021, Abdeen et al. 2021). 

Daily electricity consumption shows high variability between and within 
households, for different days of the week and throughout the year. Being able 
to identify a few exemplary daily behaviors, which are not too dissimilar to the 
multitude of possible profiles, allows to find changes in consumption patterns. 
Clustering can thus be used for assessing the impact of behavioral intervention 
in the consumption habits, as a change in daily load shapes. In fact, changing 
part of the consumption load to off-peak periods brings both economic and 
environmental benefits, particularly in the context of economies which rely more 
and more on intermittent renewable energy provisions.  

One of the most popular clustering techniques is k-means (Lloyd 1982), which 
divides data into clusters characterized by their typical shapes called centroids. 
The algorithm minimizes inertia, which is obtained by summing the squared 
distance between each data point and its closest centroid. The number of 
clusters needs to be defined a priori, and the most appropriate one can be 
chosen by comparing the final inertia through the elbow method (Thorndike 
1953). K-means is suitable for load profiles clustering, because it is relatively 
simple, it typically finds meaningful centroids profiles, and it scales well with the 
amount of data. K-means is the chosen clustering method in this report (see 
Section 4-6). We refer the reader to newTRENDs deliverable 5.1 (Marangoni et al. 
2022) for a detailed report on clustering of residential load profiles.  
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3.3 Explainable machine learning 

Machine learning (ML) algorithms and in general artificial intelligence is 
increasingly being adopted in a wide range of sectors, from industry to 
academia, achieving better and better performance over time. This widespread 
success is due to a combination of more powerful machines and easier access 
to a vast amount of data. The complexity is also increasing though, and often 
ML approaches are considered as ’black box’, leading to difficulties in the 
interpretation of results. The lack of interpretation may reduce trust in results. 
To overcome this drawback, the field of Explainable Artificial Intelligence (XAI) 
develops methods to explain and interpret machine learning models (Linardatos, 
Papastefanopoulos, and Kotsiantis 2021). In this context, the term explainability 
and interpretability are used interchangeably, but they actually have a different 
meaning: interpretability is defined by Miller (Miller 2019) as "the degree to 
which a human can understand the cause of a decision". On the contrary, 
explainability regards the understanding by humans of the internal procedure 
of the machine learning model in giving the output. 

The SHAP (SHapley Additive exPlanation) was introduced by Lundberg and Lee 
(Lundberg and Lee 2017) to explain the output of any machine learning model. 
The method is inspired by game-theory and it computes the importance value 
that the machine learning model places on each feature for predicting each data 
point; positive or negative SHAP values indicate the direction of the effect (i.e. if 
the feature influences the predicted value by increasing or decreasing it). It 
therefore guarantees both global interpretability (it shows how much each 
predictor contributes) and local one (for each observation it is possible to derive 
its set of SHAP values), and has the properties of local accuracy, missingness, 
and consistency (Lundberg and Lee 2017). 

SHAP, together with LIME (Lundberg and Lee 2017), is one of the most dominant 
methods in the literature to assess feature importance, it is model-agnostic and 
can be applied to any type of data. For example, in R. Li et al. (2020) SHAP values 
unravel nonlinear relations between mortality risk and individual risk factors, for 
the prediction of mortality risk in prostate cancer; in D. Wang et al. (2022) 
XGBoost proves to be successful together with SHAP in investigating how to 
improve process management in wastewater treatment plants; in Akhlaghi et al. 
(2021) SHAP method is used to interpret the contribution of the operating 
conditions on performance parameters of Guideless Irregular Dew Point Cooler. 
However, there is not an established way to interpret statistical significance of 
SHAP values. Furthermore, similarly to any ML methods, the complexity of the 
algorithms does not automatically overcome selection bias and variation in data 
collection methods. 

XAI has also been applied to electricity consumption time series data by 
providing visualization of highly personalized electricity consumption feedback, 
obtained with SHAP and LIME (Wastensteiner et al. 2021). In an experiment with 
152 participants, results show that humans can assimilate the patterns displayed 
by XAI visualizations, but standard visualizations can make the feedback better 
understandable by users. 
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XAI is an interesting tool for assessing behavioral interventions on smart meter 
data. In fact, electricity consumption can be modeled and predicted with an 
algorithm such as XGBoost (see Section 3.1.1), and SHAP values help unraveling 
the importance of the features used to predict consumption. In this way, it would 
be possible to estimate the influence of e.g. the weather, or receiving a home 
energy report, on the power consumption. We will illustrate an application of 
this approach in Section 4.2.2.  

3.4 Heterogeneous treatment effects 

How does a treatment effect vary across individuals? In many studies behavioral 
interventions appear to be more effective for a subset of the population (i.e., 
nudge effectiveness on immunization campaign in India (Banerjee et al. 2021; 
Chernozhukov et al. 2018)). Understanding which subgroup responds better to 
a treatment allows for improved targeting and design of treatment. For example, 
a randomized control trial (RCT) experiment in the USA showed how political 
liberals respond to HERs (Home Energy Reports) by reducing consumption two 
to four times more than conservatives (Costa and Kahn 2013). In Asensio and 
Delmas (2015) authors find that residential households that receive tailored 
information about environmental and health damages produce 8% energy 
savings compare to the control group. For family with children instead, the 
average effects were found to be 19%. 

Estimating the average treatment effect (ATE), which is the common approach 
with randomized control trials (RTCs), gives only limited information, ignoring 
the variability in the response to treatment. What is in general more interesting 
is the conditional average treatment effect (CATE), which tells the variation in 
the response for different subgroups. This variability allows to personalize 
treatment and better understand causality mechanisms. Traditional 
econometrics provides various methods for estimating the CATE. A simple 
approach is to compute the ATE among subjects in a specific subgroup. 
Alternatively, a regression framework together with dummy variables 
differentiates the effects on subgroups. In cases in which multiple subgroups 
may be tested to check for differences in the treatment effects, we encounter 
the problem of multiple comparisons: statistical significance become more likely 
to be achieved, leading to an increase in probability of wrong results. To mitigate 
the problem, it is possible to either reduce the number of subgroups tested (or 
pre-specify the tests that you will carry on through a registered pre-analysis plan: 
PAP), or to adjust the p-value to account for the simultaneous test on multiple 
hypotheses (e.g. with Bonferroni correction, in this case the risks is to be too 
conservative since the hypotheses are considered independent). 

With the recent availability of big data, the number of covariates and interaction 
terms can outnumber the observations, and it may be interesting to span all the 
possible subgroups to check for heterogeneity, without relying on a-priori 
assumptions. In this context, machine learning methods have been developed 
to automate the search for heterogeneity in treatment and allow for cross-
validation of the outcomes (Athey and Imbens 2015). For example, 
metaalgorithms (or meta-learners) build on basic algorithms, like logistic 
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regressions, random forests, XGBoost …, to estimate the CATE. The most 
popular meta-learners are S-learner, T-learner, X-learner (Künzel et al. 2019), 
with Python implementations available online (H. Chen et al. 2020). 

3.4.1 Causal forest 

A generalized random forest (causal forest) is a causal machine learning method 
developed by economists Susan Athey and Stefan Wager (Athey, Tibshirani, and 
Wager 2019). Causal forests are flexible nonlinear models able to evaluate 
heterogeneous treatment effect, applicable also with a high number of features 
and able to provide confidence intervals. The algorithm consists of recursively 
partition a sample in subgroups that maximize heterogeneity across splits, with 
optimization of treatment effect heterogeneity as splitting criterion. Each run of 
the partition is a classification and regression tree (CART), while the forest is 
constituted by multiple trees which analyze a bootstrapped subsample of data. 
The algorithm of causal forest is an adaptation of random forests to the study 
of causal effect. While in a random forest the same dataset is used to create the 
tree structure and evaluate the ATE, Athey and Imbens (2015) introduce the 
concept of honest estimation, where each bootstrapped subsample is split in one 
part used to create the tree, and the other to estimate the treatment effect for 
each leaf. Causal forests have been used to estimate heterogeneous treatment 
effects in different fields, such as road safety (Zhang, Li, and Ren 2022). A Python 
implementation of the causal forest algorithm is available in the econml package 
from Microsoft (Battocchi et al. 2019). 

Causal forests have been applied to evaluate target treatment for household 
energy use in Knittel and Stolper (2019), where across fifteen Opower waves the 
ATE corresponds to a reduction in monthly electricity usage of 1 percent (9 kWh). 
Data consist of one year of pre-treatment and 3 years of treatment data with 
monthly resolution. In the first two months the authors find no significant 
impact, but from subsequent months a consistent downward trend in 
consumption is observed. Causal forests have been applied to investigate which 
features lead to higher energy savings, finding that the stronger predictor is pre-
treatment consumption. 

A RCT with 120’000 customers in Germany found conservation effects of 
information campaigns for residential energy conservation (Andor et al.2022) 
ranging from zero to −1.4%. Using causal forests, they show that heterogeneity 
across utilities cannot be explained by socio-demographic characteristics. 

3.5 Conclusions 

In the previous sections we described multiple innovative techniques based on 
ML that can greatly improve the assessment of behavioral interventions. The 
techniques to apply depend on data availability and research goals.  For 
example, if a control group is not available, but the pre-treatment period is long 
enough compared to the natural periodicity of the signal (typically one year for 
power consumption), counterfactuals can be constructed by forecasting the 
future of the pre-treatment periods (Section 3.1).  Domain-specific knowledge is 



 

Deliverable 4.2 Impact assessment of household-level behavioral 
interventions via smart-meter data 

 

 

26 

necessary for choosing the best forecasting approach in the context of power 
load data (Section 3.1.1). 

Clustering techniques, despite being usually applied for descriptive purposes, 
are also helpful to underline effects of an intervention, e.g. to test if the 
intervention changes consumption patterns differently for multiple groups of 
people (Section 3.2). While clustering of load curves is helpful to describe 
patterns of behaviors, and changes thereof, other ML approaches specifically 
aim at untangling heterogeneity (Section 3.4). In particular, causal forests 
(Section 3.4.1) are suitable for exploring the heterogeneity of the treatment 
effect on a high number of variables. Finally, Explainable ML developed 
indicators that are able to assess features importance for a ML model. This 
approach is very promising for evaluating treatment effects, while more work is 
needed to accurately establish findings’ significance.  

In general, ML techniques are advantageous for many reasons. ML models are 
more sophisticated, with linear and nonlinear interactions taken into account in 
an automated way, as well as high-order interactions. This gives better 
forecasting, with a high out-of-sample predictive power. The assessment of 
heterogeneous treatment effect is more accurate with ML approaches like causal 
forests and ML algorithms usually are suitable for studying very large datasets 
(Athey and Imbens 2019). Using clustering techniques, it is possible to detect 
exemplary behaviors on the data.  

More theoretical work is still needed to develop methodologies to estimate 
robust standard errors, comparable to well-established econometric standard 
approaches (Mullainathan and Spiess 2017). Moreover, data need to be 
comprehensive enough to allow application of ML tools like forecasting (the 
series of historical data needs to be long enough to give accurate predictions); 
while for assessment of heterogeneity, the relevant variables need to be 
available, and for each group of users there needs to be sufficient 
representativeness. 

In the remaining part of this report we show three case studies where we apply 
clustering techniques in different ways. We also show an application of 
explainable ML methodology for assessing HER treatment effect (Section 4.2.2).  
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4. Italian case study 1 - Bologna 

4.1 Impact of COVID-19 restrictions on household 
consumption patterns 

As discussed in Section 1.2, COVID-19 lockdown had a strong impact in 
electricity consumption, both in the domestic and industrial sectors. In 
particular, the increase in working-from-home, induced by the pandemic 
lockdown, has reinforced the societal trend of increase in home-office already 
happening in modern societies. For this reason, the first COVID-19 lockdown is 
a unique natural experiment that allows us to foresee the consequences of a 
high share of people working from home. For the scope of NewTrends, exploring 
the influence of lockdown on energy demand is related in particular to Task 6.2 
(Modeling the impact of digitalization and new market trends in the tertiary 
sector on energy demand and energy-efficiency potentials). 

In this section we evaluate the impact of COVID19 on household power 
consumption in Italy, using smart meter data. The dataset is composed of hourly 
smart meter data recordings from thousands of households from the area 
around the city of Bologna in Italy. Recordings are available for the year 2019 
and 2020, although the households for the two years are not the same (only two 
of them are in common) and for 2019 we have a lower number of users. We use 
a clustering approach (k-means), to be able to find groups of users that behave 
similarly, thus unraveling the difference in hourly and daily consumption before, 
during and after the first national Italian lockdown. 

Our aim is to evaluate the impact of the multiple closures of activities and 
lockdowns on the average daily consumption of domestic users. Since electricity 
consumption changes depending on seasonality, day of the week, and special 
holidays (e.g., Easter), it is crucial to make a comparison between the 
consumption in 2020 and the trend of the previous year. Although in our dataset 
the sample of households in each year is different, we are still able to get 
interesting insight from the comparison. 

The preprocessing of data consists of the following steps. We eliminate duplicate 
data, discard data of zero consumption, and days with less than 24 hours of 
valid data. Finally, we remove users who have more than 5 days of missing data 
in the time interval under study. 

We select the time period between the first of February and the end of May, for 
both 2019 and 2020. For each household, we use the time-series of the (z-
standardize) average (of the log of) daily consumption. In order words, we get a 
signal with the average of electricity consumption for each day in the four 
months. For 2019, in the period between the first of February and the end of 
May, we have 119 valid days; the users are 165. For 2020, in the same period 
we have 120 valid days, and 518 households. We select only household in the 
city of Bologna. 
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We divide the period February-May 2020 in four time intervals, and we project 
the same intervals on 2019 for comparison: 

• Before COVID-19: From the first of February to the 9th of March; 

• First part of Lockdown: until the 29th of March. We choose this date 
because it is the daylight-saving date for 2020; in this way we can map 
difference in behavior due to seasonality. 

• Second part of Lockdown: until the 4th of May, when reopening of activities 
started in 2020. 

• After: reopening, until the end of May. It goes from the reopening of 
activities, until the end of the month. 

For the identification of consumption patterns, we cluster the signals, using 𝑘𝑘-
means algorithm (Lloyd 1982), and the elbow method (Thorndike 1953) to 
determine the number of clusters. Throughout the analysis we consider two time 
scales of signals to cluster: the daily consumption for the whole period February-
May (2019 and 2020), and the hourly consumption for a day - selected for the 
same period. While the whole-period-clusters shed light into the overall variation 
in consumption throughout the pandemic phases, the day-clusters are helpful to 
unravel daily habits of people. 

First, we discuss the analysis of the day-clusters: hourly consumption for a day. 
In Figure 1 we show the clusters of daily consumption, at hourly resolution, 
obtained with 𝑘𝑘-means clustering. The daily clusters belong to the period of 
February-March of either 2019 or 2020. The daily profiles for different users of 
both years are merged in one dataset in order to find common daily behaviors.  
Typical daily consumption patterns are in fact common in the two subsequent 
years, as one would expect; only the frequency of each type of daily behavior 
changes, in particular as a consequence of the lockdown, as we will describe 
late. The number of clusters, six, is selected trough the elbow method. In Figure 
2 the distribution of daily energy consumption of the curve in each cluster is 
shown. Both these plots help understanding how the clusters describe hourly 
behaviors of household. 

• 1: Afternoon-evening consumption; 

• 2: Small morning peak, high (early) evening consumption; 

• 3: Late morning - early evening activities; 

• 4: Uniform, low consumption; 

• 5: Late evening activity; 

• 6: High lunch peak - medium dinner consumption. 

In Figure 3 we illustrate the fraction of daily curves which belong to each cluster, 
for each of four corresponding time periods in 2019 and 2020. From the change 
in frequency distribution of clusters we see how daily consumption 2 (small 
morning peak, high early evening consumption) and 5 (late evening activity) 
decrease during lockdown: those behaviors characterized a common 8-hours 
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working days - outside home. Early evening consumption (2) remains of low 
prevalence also in the reopening period, while the evening consumption (5) 
regains comparable level with the previous year (towards the summer, daily 
consumption (5) was monotonically increasing also in 2019). The frequency of 
cluster (3) (intense morning and evening consumption) does not change 
significantly, while cluster (4) (uniform and low consumption) shows a slight 
decrease in the second part of the lockdown, probably indicating that people do 
not go on holiday). Finally, clusters (1) and (6) (Figure 1) increase their 
prevalence during lockdown, and even in the reopening time these clusters 
remain more prevalent than before. In summary, daily energy load (1) and (6) 
(high afternoon-evening consumption and intense lunch-time load) are likely 
load curves that characterize smart working. 

Figure 1:  Cluster of daily consumption at hourly resolution. Data cover 
the period of the first COVID lockdown (from February to May) 
in 2020, and the same months of the previous year 2019. In 
the squared brackets, the timing of the peaks. 
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Figure 2:  Distribution of daily total energy of the curves in each cluster. 
The bars span the range of values. 
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Figure 3:  Frequency of daily curves belonging to each cluster, for four 
corresponding time periods in 2019 and 2020. The black line 
on top of each bar indicates the -almost invisible- standard 
deviation obtained with bootstrap. 

 

With day-cluster hourly consumption analysis we show the average variation in 
daily behaviors. It is also interesting to characterize households depending on 
how the overall consumption changes with the pandemic, and eventually link 
these changes with possible changes in daily consumption at hourly resolution. 
We analyze these results for the daily consumption clusters separately for 2019 
and 2020. For the 2020 we find an optimal value of 6 clusters, while for the 
2019 we keep the same value for comparison (the optimal value is 7). Figure 4 
and Figure 7 show the clusters obtained for the two datasets. We underline the 
date correspondent to daylight saving and Easter. For the 2020, the year in which 
lockdown and restrictions started to take place in Italy, we underline also the 
time interval when there was the first COVID-19 national lockdown (09/03/2020 
- 04/05/2020). The 9th of March 2020 was when the national lockdown was 
declared, with the closure of schools, activities and shops (a part from grocery 
stores, pharmacies and other essential services), and the citizens were obliged 
to work from home (with the exception of essential workers); while on the 4th of 
May, many activities started to open again after the lockdown. In Table 2 we 
provide some information about house characteristics. Unfortunately, this 
information is available only for 2020. We show the percentage of Green 
electricity contracts, the percentage of households where tenants are resident, 
and the average surface of the house in square meters. 
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Table 2:  Percentage of household: with a Green contract and with 
Resident occupants; average dwelling Surface in square 
meters; these values are the average for every cluster of 
Figure 7. The average values for all the sample are also 
shown. 

Cluster Green Residents Surface 

average 37% 88% 78.39 

a 33% 86% 79.27 

b 27% 89% 78.73 

c 43% 90% 72.76 

d 30% 86% 77.70 

e 33% 91% 88.48 

f 38% 90% 77.27 

From the cluster representation, we can see clearly that the Easter valley (of 
cluster (a) and (e) in 2019, Figure 4) is absent in all the clusters for 2020 (Figure 
7), indicating that obviously people in 2020 have not been able to go on vacation 
on those days. For both the years we have a cluster (cluster (d) for 2019, (a) for 
2020) in which the difference between weekday and weekend is particularly 
evident and regular throughout the period. This cluster indicates people likely 
to not be as much at home during the week as during the weekend; the same is 
probably valid also for the households in the cluster (a) for 2020 - despite the 
restrictions, some people where still going to work outside home. For 2020 there 
is a peak around the beginning of the lockdown (cluster (b) and (d) in Figure 7, 
synchronized with the Daylight-saving date) followed by a decrease of 
consumption. Cluster (c) indicates probably household with people doing smart 
working, since the consumption has increased regularly with the first closures 
and then has continued to stay high. The information in Table 2 suggests a 
smaller dwelling surface than average and high prevalence of green contracts, 
likely to indicate relatively recent electricity contracts, in a central area of the 
city. Cluster (e) has a lower level of consumption during the closure, and it is 
also the cluster with the minimum mean household consumption (Figure 8); it 
likely indicates houses where some tenants moved somewhere else during the 
lockdown, for example off-campus students. In fact, looking at Table 2, 
households in cluster e are likely to be bigger than average. Overall, the trends 
evident from the 2020 daily clusters (Figure 7), are quite different from the 
clusters of 2019 (Figure 4). For the 2019, apart from Easter and the week-
weekend regularity, clusters just show some increasing or decreasing trends, 
probably related to seasonality through heating and cooling systems. For the 
2020 instead, daily clusters allow to characterize groups of households based 
on their response to closure. 
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Figure 4:  Clusters obtained with k-means for the daily consumption over 
a period of a few months, for the year 2019. 

 

Figure 5:  Distribution of mean household consumption for consumers 
of each cluster in Figure 4. The bars span the range of values. 
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Figure 6:  For each daily cluster in Figure 4, the distribution of hourly 
cluster (from Figure 1). Errors bars represent standard 
deviations obtained with a bootstrap procedure (10 resample, 
each with 60% of users). Gray bars represent frequencies of 
each cluster. 

 

 

Figure 7:  Clusters obtained with k-means for the daily consumption over 
a period of a few months, for the year 2020. 
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Figure 8:  Distribution of mean household consumption for consumers 
of each cluster in Figure 7. The bars span the range of values. 
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Figure 9:  For each daily cluster in Fig. 7, the distribution of hourly cluster 
(from Figure 1). Errors bars represent standard deviations 
obtained with a bootstrap procedure (10 resample, each with 
60% of users). Gray bars represent frequencies of each cluster. 

 

Finally, we associate daily and hourly clusters, to link the monthly behaviors with 
the daily patterns: we check for each households' types a-f (years 2019 and 
2020) if some daily clusters at hourly resolution are more prevalent than others; 
this analysis indicates different typical profiles of users throughout the 
pandemic lockdown. In Figure 6 and Figure 9 we show the different frequencies 
of hourly cluster 1-6 (from Figure 1) for each daily cluster a-f. Comparing the 
bars with the gray ones, it is possible to check if the specific hourly cluster n 
(with n between 1 and 6) is more/less common on daily cluster m (with m 
between a and f) compared to the average frequency on all the possible daily 
clusters. We highlight here some features that appear from those comparisons. 
For the 2019, we underline how the regular week-day/week-end behavior of 
household type (d) is associated with a prevalence of hourly cluster (2) (Figure 
1), the typical eight-hours-day-at-work behavior. For the year 2020, we notice 
how household type (c) (forced smart-working users) have a high prevalence of 
hourly behavior (5) and (6) (from Figure 1), describing late morning peak 
(behavior 5) and a high peak at lunch-time (behavior 6). It is reasonable to expect 
the high peak at lunch-time hourly behavior as more typical for people working 
from home. 
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4.1.1 Conclusions 

In the previous section we applied different clustering techniques to associate 
daily and hourly clusters of residential consumption throughout the period 
before, during and after the first COVID-19 lockdown in Italy. Broadly speaking, 
we were able to identify households that keep a similar regular pattern of 
consumption as before lockdown, and others who switch to a working-from-
home consumption pattern, with a strong increase in mid-day consumption 
peak. 

The method proposed of linking clusters obtained with multiple time periods 
and resolution is a valuable approach that can be generalized for others similar 
analysis of natural experiment when a control group is not available. In fact, it 
makes it possible to cluster users at a time scale of the experiment (in our case, 
daily consumption spanning the period from before to after the event) thus 
recognizing the groups of people who respond in different ways to the natural 
event. Separately, consumption can be clustered at a smaller scale (e.g., 
consumption of a day at hourly resolution), to explore different patterns in daily 
habit among users, and check if these differences are related with the difference 
between households at the time scale of the experiment.  

Limitations of this study are related to the relatively small number of 
households, and the lack of more detailed meta-data regarding socio-economic 
characteristics. The additional information on green contracts, dwelling surface, 
and residence (Table 2), are available only for part of the households, preventing 
the possibility of an exhaustive comparison. 

4.2 Energy conservation interventions through 
Home Energy Report 

In the last decades many works studied the effect of behavioral interventions for 
energy conservation (see Section 2.1), and in particular on the effect of home 
energy reports (HERs) in reducing residential consumption. Most of the studies 
though take place in the USA, and residential consumption is often aggregated 
at monthly level. On one hand, this leads to missing the fine-grained effects of 
HERs on the time scale of a few days. On the other hand, the variety of behaviors 
in each country leads to a different potential for energy saving. Here we present 
a study of the effect of HERs on smart meter data in Italy, in the area of Bologna. 

The dataset is the same as in Section 4.1, extended to other towns around 
Bologna; in fact, the households from this dataset have been periodically 
(monthly or bi-monthly) receiving home energy reports via email (eHER) 
throughout all the year. HERs consist of a comparison of the consumption with 
those of similar clients (similar in terms of type of building and number of 
occupants), and the comparison with virtuous clients. A second part of the report 
compares the current consumption with the one from the previous year, with 
information on the C02 that has been saved/emitted more/less than previous 
year. Finally, tips for energy saving are provided. 
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The dataset consists of panel data of power load at hourly resolution for 936 
household located in the region around Bologna (Italy), for a time span starting 
from December 2019 until October 2020. These households have been receiving 
HER monthly or bimonthly, with different reception time for each family. In 
Figure 10 we show the distribution of reception times depending on the month 
and the day of the week. These dates are not uniform in the dataset, and 
reception dates are not synchronized among users. 

Figure 10: HER reception dates depending on the month and day of the 
week. 

 

Our aim is to evaluate the effect of HER reception on users' consumption. As we 
mentioned in Section 2.1, usually RCTs are implemented to evaluate efficacy of 
HER, and this allows to assess the causality of the intervention. In our case 
though, a control group is not available; we therefore consider different 
approaches. The first one is a two-way fixed effects regression model (2FE) 
(Section 4.2.1), which allows to estimate the variability in consumption after the 
report. However, this approach relies on modeling assumption of linear addictive 
effects (Imai and Kim 2021) which are not completely justified for panel data of 
power consumption. We therefore apply also the XGBoost algorithm with the 
explainable AI tool SHAP to check results accuracy (Section 4.2.2). 

4.2.1 Two-Way Fixed Effects Regression Models 

The two-way linear fixed effects regression (2FE) is one common approach for 
estimating causal effects from panel data. In our case, we assume that receiving 
a HER induces an energy saving within a timescale of a few days after the report, 



 

Deliverable 4.2 Impact assessment of household-level behavioral 
interventions via smart-meter data 

 

 

39 

and we aim at evaluating that outcome. We therefore ignore the cumulative 
effect of receiving many reports while focusing on the short-term higher effect. 

We apply a 2FE to estimate the daily load consumption of household as a 
function of the date difference with HER reception, including four days before 
and six days after the receiving day. If 𝑦𝑦𝑖𝑖𝑖𝑖 is the KWh consumed by family 𝑖𝑖, in 
the time interval 𝑡𝑡 (here we assume the binning is the consumption of a day), 
the regression is: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑐𝑐 + � 𝜏𝜏𝑘𝑘

6

𝑘𝑘=−4

𝐷𝐷𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑑𝑑𝑖𝑖 + 𝑔𝑔𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 

where 𝐷𝐷𝑖𝑖𝑖𝑖𝑘𝑘 = 1 if 𝑘𝑘 is the date difference with a report reception day for family 𝑖𝑖 
on the day 𝑡𝑡 (and −4 <= 𝑘𝑘 <= 6), and 𝐷𝐷𝑖𝑖𝑖𝑖𝑘𝑘 = 0 otherwise. 𝑐𝑐 is a constant, 𝑑𝑑𝑖𝑖 and 
𝑔𝑔𝑖𝑖 are day of the year and household fixed effects, respectively. Standard errors 
are clustered at the level of household. 

In Figure 11 we show the regression coefficients𝜏𝜏𝑘𝑘. On the second day after the 
report reception, we see an average decrease in consumption, which is not 
significant though. The energy saving corresponds to around 1.3% of the 
average daily consumption in the dataset. Further statistics related to the 
regression are reported in Table 3.  

Figure 11:  Regression coefficients τk (in KWh) to estimate the effect of 
HERs on the k days after the report is received. The error bars 
are standard errors clustered at the level of single household. 
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Table 3:  2FE regression summary table. 

 

4.2.2 XGBoost and SHAP for estimating HER treatment 
effect 

Another approach to estimate the treatment effect of HERs is to build a 
counterfactual as described in Section 3.1, in order to compare household 
consumption after HER reception with the estimate in the absence of report. The 
problem with applying this approach to our data is twofold. On one hand, the 
staggered reception of reports requires the forecasting to learn from a few 
weeks period to predict a week of consumption. This is usually not a long 
enough time when dealing with data with not only weekly, but also yearly 
periodicity. The second problem come from the specific forecasting of individual 
power load time series. As we described in Section 3.1.1, power load is a type of 
time series particularly volatile, and usually reliable forecasting can be made 
only at an aggregate level, with a historical period of learning data that should 
span some years. 

Tree-like algorithms are typically adopted for prediction, and they can be 
extended to time series prediction. In this case, features can be the month, day 
of week, day of year, hour etc. When applied to power load data, gradient 
boosted trees (XGBoost) can be used to build a counterfactual by predicting the 
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values of the consumption, depending on features as day of the week, 
temperature etc. (Souza 2019). Taking into account the limitation of our dataset 
in estimating a good enough forecast of time series, we do not use XGBoost to 
build a counterfactual, whereas we interpret the evaluation of the treatment 
effect as a feature importance problem. In other words, instead of using XGBoost 
to predict the counterfactual and then comparing it with the consumption 
values, we decide to simply fit the whole consumption period and then check 
the influence of the feature day before/after HER on the model (Lundberg et al. 
2020). In this way, we build a machine learning extension of the regression 
model in evaluating the impact of the treatment. To the approach of Section 
4.2.1, we assume the effect of HER to be visible only in the week after the 
reception. We also include as features few days before the HER, with the aim of 
testing the soundness of our results. Finally, SHAP, an explainable AI (XAI) tool 
(Rojat et al. 2021) described in Section 3.3, is used to estimate the features 
importance for the machine learning model. 

Figure 12:  Feature importance for all the features used in the XGBoost 
model. Positive (negative) SHAP values indicate an increase 
(decrease) in the model output (i.e. energy consumption). 

 

The features considered for the model mimic the regression of previous Section 
4.2.1. Figure 12 shows the relative importance of the different features used in 
the XGBoost model to describe the time series. Positive SHAP values indicate that 
the feature is positively impacting the output of the model, the opposite holds 
true for negative values. Each point that the model predicts (in our case, each 
day of consumption of a household) has a different SHAP values for each feature 
used for prediction. If the feature day 1 after HER has a negative SHAP values, it 
means that day 1 after HER is leading to a reduction in consumption for that 
household. The most important feature is the identity of the household (user), 
followed by the day of year. The day after/before HER influence on the model 
prediction is shown in Figure 13, where we can see that on the two days after 
the report reception, there is a decrease in consumption compared to the 
previous and following days, but from the third day the consumption level is 
again comparable to the values before the report. 
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Figure 13:  Same dataset as in Figure 11, analyzed with XGBoost and SHAP 
values. Errors correspond to the 95% quantiles obtained from 
many bootstrap realizations (50 realizations). 

 

The last week of data (from 18 October 2020) is excluded from the training 
dataset for model validation. We compute the RMSE (root-mean-square error) 
between the test data and the model prediction. This value should be compared 
with the average of the test data in the same time interval, to estimate the 
relative importance of RMSE. At a daily resolution (Figure 13), we find a RMSE of 
3.64 with mean value: 6.95 (RMSE/mean ≈ 52%). We also consider a model with 
data at hourly resolution, therefore including hour of the day ad feature. This 
model performs worse than the daily resolution one, we get RMSE: 0.217 and 
mean 0.212 (RMSE/mean ≈ 102%). Another approach that we consider is to only 
model the consumption on the hours between 8am and 19pm. The results are 
similar to those of the daily consumption. 

4.2.3 Conclusions 

Our analysis shows a slight decrease in consumption in the days just after HER 
reception, but the reduction is not significant. Results are obtained by applying 
both the traditional two-ways panel regression model with fixed effects, as well 
as the ML algorithm of gradient boosted tree (XGBoost) with SHAP values for 
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features importance estimation. The use of the ML algorithm confirms similar 
results as the panel regression approach.  

Bigger dataset and longer time-series would be helpful in assessing significance 
of results. Future work will analyze data with these characteristics from the 
following years. Another difficulty is the absence of a control group, considering 
that power consumption is subject to common external influence (price increase, 
lockdown...). Next steps include the study of a similar dataset where a control 
group is provided. We will then be able to explore the heterogeneity in the 
response and to provide better support for the statistical significance of the 
findings. 
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5. Italian case study 2 - Isernia 

This work combines the classical regression approach, as in (Houde et al. 2013), 
with a machine learning approach, as in (Kwac, Flora, and Rajagopal 2014), to 
better understand if and how power consumption behavior changed 
concurrently with the installation of an in-home displays providing real-time 
feedback in a sample of Italian households. A complementary study on the same 
dataset involves a functional data analysis to uncover patterns related to 
appliances ownership (Fontana, Tavoni, and Vantini 2019). 

5.1 The in-home display 

In 2011, one of the largest electricity companies in Italy started a 3-years-long 
pilot project in the area of Isernia (mid-south Italy) to test new smart-grid-related 
technologies and inform future network restructuring plans. One part of the 
project dealt with customer engagement for demand response. In this context, 
a kit was distributed to thousands of end users to enable active participation by 
making people aware of how much electricity they were consuming. 

The main interaction with the kit occurs via a display installed in the house, 
informing users about instantaneous consumption, as well as daily, weekly and 
monthly summaries. The display also provides information about the current 
billing slot (days are split in 3 billing periods, peak (F1), intermediate (F2) and 
off-peak (F3)) and the time at which the next slot will enter into force. If users 
enter information about their billing tariffs, they also get feedback on monetary 
expenditures. Users can set goals, and are also warned by an acoustic signal 
whether their power consumption exceeds the contractual obligation (set at 3kW 
for most customers). 

Features of the in-home display for real-time power consumption information 
feedback, distributed to households in the province of Isernia. 

The display was distributed to residents of Isernia city and surrounding 
municipalities for free. The company focused on this area for technical reasons, 
related to the feasibility of high-frequency consumption data measurement and 
transmission. The display was not randomly allocated: it was first distributed 
outside the city, and subsequently in the city. The company advertised this 
opportunity through media campaigns. They faced initial difficulties in recruiting 
enough volunteers, possibly for concerns about privacy or simply lack of 
advertisement. They subsequently intensified the promotional campaign, by 
hosting meetings within local communities, in schools and other public spaces. 
This had the effect of increasing participation quite rapidly. Overall, the trial was 
not carried out according to the golden rules of randomized controlled trials. 
The design is subject to possible self-selection which can hinder the external 
validity of the program impact. Nonetheless, the trial provides useful 
information on energy consumption behavior, and is the first one carried out in 
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Italy on a large sample. We discuss below the measures we have taken to try to 
mitigate the imperfect (from a research stand point) implementation. 

5.2 Methods 

The kit, containing the in-home display used for consumption feedback testing, 
was distributed to thousands of households in the province of Isernia in Italy. 
Recruitment occurred on a voluntary basis, and was supported through several 
channels. Between June and September 2012, the kit was promoted with 
informational days at schools, mass marketing, and collaborations with public 
authorities and institutions. The official recruitment started in November 2012, 
while informal tests were running since August. Among those who adhered to 
the initiative, only a sub-sample, which will be called the "Client" sample, had 
the in-home display still active at the end of the test period, namely December 
2014. This sample excludes non-domestic or non-resident customers, as well as 
those with a power contract other than 3kW or 4.5kW, as patterns of 
consumption may be very different in these cases. For each household in the 
“Client” sample, the utility provided data on monthly energy consumption 
between January 2012 and December 2014, split by billing time slot3. Extra 
available information includes contractual power and municipality at the 
moment of joining the program, as well as date of delivery and version of the 
display. With "Survey" sample, we denote a subset of the "Client" households that 
agreed to provide also information on the demographics of family members, the 
number of appliances available in the house, and some characteristics of the 
dwelling. 

For another subset of the "Client" households, which will be referred to as the 
"Curves" sample, it was possible to obtain higher frequency readings of energy 
consumed, i.e. every 15 minutes, at least for a fraction of the full 3-year span. 
The collected load curves are re-sampled to 1-hour time steps for the purposes 
of this analysis. To filter outliers on the higher end, we assume that electricity 
can be withdrawn at most with power exceeding 10% the contractual value. 
Hourly readings exceeding 3.3kWh or 4.95kWh are thus removed for 3kW or 
4.5kW contracts households respectively. These thresholds represent the same 
power levels above which service would generally be discontinued after a while. 
Still, only a tiny fraction of observations exceeds these extremes, corresponding 
to around 99.999% quantiles of their respective datasets. A slightly more 
restrictive threshold is assumed on the lower end, removing data below the 0.1% 
quantile (i.e., 4Wh). This should filter very low readings which might correspond 
to either faulty sensors, blackouts or empty houses, i.e., not interesting cases 
for the analysis. Gaps up to 2 hours of missing data are interpolated linearly 
from available values. Days remaining with missing points after this 

                                           

3  Time of use is classified into 3 categories: F1 (on-peak), from Monday to Friday 8am-
7pm, national holidays excluded; F2 (intermediate), from Monday to Friday 7am-
8am and 7pm-11pm, plus Saturday 7am-11pm; F3 (off-peak), from Monday to 
Saturday 11pm-7am, plus Sunday and national holidays. Depending on the contract, 
different time slots may have different prices, with the most popular billing having 
a higher price for F1 and a lower price both for F2 and F3. 
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interpolation are removed. There is no clear best sample among the three for 
our impact evaluation purposes, since those with higher number of observations 
have also a lower number or different set of variables available. Hence, we 
decided to include all of the three in the analysis that follows. 

Households who joined and stick to the experiment seem to have consumed 
much more than the average family in Isernia in 2012, both when considering 
the estimate from ISTAT of 1973 kWh and the one from TERNA of 2248 kWh. 
Both average and standard deviation of consumption across households do not 
change much between the sub-samples considered. When looking at survey data, 
we observe that the program involved families with above-average number of 
members and rooms in the house. Ownership of washers, dryers, dishwashers, 
electric boilers is also above the regional average, while the presence of air 
conditioning is more marginal. This holds also when considering the intersection 
of the "Survey" and "Curves" samples. Thus, it appears that the sample of our 
analysis is not fully representative, pointing to selection bias. The bias was not 
apparently driven by higher per capita energy consumption: this matches quite 
well the official statistics of the Isernia municipality. However, families 
participating in the trial are more numerous, with 3.2 persons per family as 
opposed to the population average of 2.4. This might be attributed to the initial 
school campaigns, which were the most successful in getting the program going 
according to the utility. 
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Table 4:  The different datasets collected during the experiment. 
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Hourly energy consumption computed from the "Curves" dataset appears to have 
a log-normal distribution (see Figure 14), in agreement with the literature (Kwac, 
Flora, and Rajagopal 2014). It includes 966 households and 26304 time periods, 
for a total of 14,805,000 non-null observations (i.e. ~60% of all client-hour 
combinations). 

Figure 14:  Distribution of hourly power consumption is well 
approximated by a log-normal distribution. 

 

5.3 Regression of daily electricity consumption 

First, we quantify the impact of the in-home display on the average power 
conservation effect. If we were to look only at conditional averages of 
consumption between those with and without an in-home display over time, we 
would risk attributing to the display the merit of an already decreasing trend in 
demand (~3% reduction per year in 2013 and 2014, based on ISTAT and TERNA 
data). Hence it is important to rely on some other identification strategies. 

Impact is usually evaluated against a counterfactual consumption, in this context 
the hypothetical one of those who already received the display if they hadn’t 
received it. Ideally, a control group is sampled to provide such counterfactual. 
Since we do not have access to the latter, we exploited as an alternative the 
gradual phase-in of the experiment, building the counterfactual on the basis of 
the consumption of those who haven’t received the display yet at any point in 
time. Figure 15 shows how households progressively received the display. 
Although our identification strategy is not ideal, recent research seems to 
indicate that high frequency data can be used to estimate causal effects in non-
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experimental research designs4. This identification strategy works as long as the 
in-home display delivery date is plausibly random with respect to HHs 
characteristics. Evidence supporting this hypothesis was found by ensuring that 
the baseline consumption level of a HH, one distinguishing characteristic 
available for all HHs, was not a predictor of the delivery date itself. 

Figure 15:  Number of observed clients with and without display at each 
month in the 3 years of the experiment. 

 

We cast the impact evaluation problem as an ordinary least square (OLS) 
regression, either in a pooled or fixed effects setting. Observations are defined 
over the set of households and timestamps, which both depend on the sample 
considered. Timestamps can be represented either as (month, year) pairs with 
the low-frequency (LF) monthly datasets, or as (day, month, year) triplets with 
the high-frequency (HF) sub-hourly dataset. The dependent variable is log of 
daily power consumption, obtained dividing monthly levels by the number of 
days in a month, or resampling high-frequency data when available. 

Independent variables include: 

• presence of the display (either 0=no display yet, or 1=display received); 

• day of the week (from 0=Monday to 6=Sunday, only for high-frequency 
data); 

• month (from 0=January to 11=December); 

                                           

4  See for example, David Rapson work entitled ’Can high-frequency data and non-
experimental research designs recover causal effects? Validation using an electricity 
usage experiment’, with Katrina Jessoe and Douglas Miller, presented at 2015 AERE 
(http://aere.org/summer/documents/AERESummerConference2015Program.pdf) 

http://aere.org/summer/documents/AERESummerConference2015Program.pdf
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• year (from 0=2012 to 2=2014); 

• municipality of the household; 

• household fixed effect; 

• time fixed effect (from Jan 2012 to Dec 2014 for LF data, and from 1st 
Jan 2012 to 31st Dec 2015 for HF data); 

• survey variables (family size, average age and sex ownership; appliance 
ownership; number of rooms in dwelling); 

• weather variables (average temperature, both in linear and squared 
terms). 

By combining different choices of dependent and independent variables we 
come up with 6 plausible models to explain consumption (see Table 5). All 
models share the same structure: 

𝑦𝑦𝑖𝑖,𝑖𝑖 = 𝛼𝛼𝐷𝐷𝑖𝑖,𝑖𝑖 + �𝛽𝛽𝑗𝑗
𝑗𝑗

𝑥𝑥𝑗𝑗,𝑖𝑖,𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑖𝑖 

where 𝐷𝐷 indicates the presence of the display at time 𝑡𝑡 in household 𝑖𝑖, 𝑥𝑥𝑗𝑗 is one 
of the other independent variables, possibly dependent only on 𝑖𝑖, 𝑡𝑡 or both, 𝛼𝛼 
and 𝛽𝛽𝑗𝑗 are the corresponding regression coefficients, 𝑦𝑦 is a transformation of 
daily power consumption according to one of the definitions listed in Table 5, 
and ε is the error term. The addition of some variables, like the survey ones or 
the day of the week, imposes restrictions on the usable sample of observations, 
as explained when introducing the three available datasets. Also, addition of 
fixed effects prevents the inclusion of covariates related to attributes absorbed 
by the fixed effects. Intervals of confidence for the coefficients are estimated 
both with and without a so-called cluster-robust covariance estimator, treating 
each individual as a cluster. Given the limited sample size, we could not explore 
potential interactions between covariates. If more data were available, it would 
be possible to quantify intervention effects per subgroup of households sharing 
specific attributes. 

To better explore the different information sets available for the three different 
samples, and to test the robustness of results to different timescales, 
subsamples and model structures, we consider multiple models. 

The first two models are fit to the “Client” sample, which is the largest of the 
three and is balanced over time, although limited to monthly observations. Given 
the very few observables available other than consumption, we capture the time-
independent but HH-dependent unobservable factors driving power demand 
with HH fixed effects. The difference in the two models is how they capture time-
dependent but HH-independent factors: either with time fixed effects (at monthly 
resolution, from Jan 2012 to Dec 2014) or with a 2-degree polynomial of average 
temperature plus monthly and yearly dummies. Historical temperature statistics 
are computed from local weather stations records, which cover only part of the 
full-time span of the experiment and hence slightly limit the number of 
observations. 
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The second two models focus on the “Load” sample, which covers fewer 
households than the “Client” sample but it introduces high frequency 
measurements. The main difference with the first two models is that time-
dependent variables have a daily resolution. The daily fixed effect model spans 
a period from 1st Jan 2012 to 31st Dec 2014. When not including time-fixed 
effects, we add to the time-dependent variables above also day-of-the-week 
dummies. 

The fifth model is fitted to the “Survey” sample, which is also smaller than the 
“Client” sample but allows for correlating power consumption with HHs surveyed 
characteristics. We replace the HH-fixed effects with these variables, which 
include family size, socio-demographics, appliance ownership and number of 
rooms in dwelling. 

In the last model we change the dependent variable: the regression of daily 
consumption is set up as in model (2), but it excludes nights and weekends (i.e. 
it focuses on the F1 billed time slot). This is when most of the energy-intensive 
household activity tends to take place. 

The choice of these models reflects the varied nature of the dataset. Model (1), 
(2) and (6) cover the highest number of HHs, but they have the least amount of 
covariates and coarsest time resolution. Model (3), (4) and (5) cover fewer HHs, 
but provide further details on sub-monthly consumption and on the peculiarity 
of each HH. Model (2) and (4) offer plausible alternatives on the role of time in 
affecting consumption, modeled either via weather effects combined with 
seasonality dummies, or via time-fixed effects. The former is more physically 
grounded, while the latter is not subject to the limits in quality and availability 
of weather data. Lastly, model (6) taps into possible on-peak effects, versus the 
overall effect on which the other models focus. Given all these trade-offs, a 
single-model assessment risks missing the nuances of our dataset and to 
provide a less robust assessment. 
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Table 5:  Models used for estimating the impact of having a display on 
daily power consumption. 

 

For each model we run a separate OLS regression. These regressions imply a 
comparison at each time period between the sets of households with and without 
an in-home display. 

The regression coefficient of primary interest is the one related to having 
received a display (i.e. 𝛼𝛼). This coefficient represents the average percentage 
increase in consumption due to the presence of an in-home display (Figure 16). 
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Figure 16:  Percentage change (positive = increase, negative = decrease) 
in daily power consumption attributed to having received the 
in-home display. 

 

The estimated effect has the expected direction. Although small, it is statistically 
significant for half of the models, and the magnitude is in line with the most 
recent studies. It is not significant for the models involving the client and the 
survey datasets, while the effect seems greater for the load curves dataset. This 
latter sample may represent households with higher consumption per capita in 
the first place, hence with more options to reduce consumption. In the models 
based on HF data, unclustered uncertainty ranges shrunk considerably thanks 
to the abundance of observations, while the clustered ranges take into account 
the correlations between observations and the masking of uncertainty is less 
evident. 

Such a small average conservation effect can have several explanations. The in-
home display alone did not provide any monetary incentive or direct message 
promoting energy conservation, which are documented to be more effective 
means than information feedback alone. The geographical area of interest is 
relatively mountainous, with a climate not requiring air conditioning. Heating on 
the other side is rarely done via electricity. Power demand is mostly related to 
lighting and other low-consumption appliances, making it harder to save more 
energy. Nonetheless, even a 1% reduction, if brought to a large scale may matter 
to the power industry. 



 

Deliverable 4.2 Impact assessment of household-level behavioral 
interventions via smart-meter data 

 

 

54 

A question which recurs in this literature is how long the effect of feedback lasts 
over time. We focus on the models with fixed effects for households and time 
periods, as well as variables controlling for having received the display within 
the last month (0-1 months), more than 1 month ago but less than 2 (1-2 
months), and so on (Figure 17). The first three models are fitted to the three 
different samples mentioned. The last one excludes consumption in nights and 
weekends. Looking at the resulting regression coefficients, we do not find a clear 
decreasing trend in effectiveness of the display as months pass by. For three 
models out of four, the expected reduction in consumption reduces either after 
one or three months of having the display. For the client model the effect is 
overall smaller and the reduction over time is less apparent. Overall, an average 
declining trend in reduction is observable in most cases, but it is not statistically 
significant for a p-value threshold of 5%. 

Figure 17:  Effect of the in-home display over time. 

 

5.4 Clustering of load shapes 

We discuss the clustering for this case study in greater detail in newTRENDs 
deliverable 5.1, and we refer the reader to that report for further details. For 
convenience, we report the 14 prototypical daily patterns of power consumption 
in Figure 18, characterized by different number, timing and intensity of peaks 
throughout the day. 
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Figure 18:  Prototypical load shapes resulting from the K-Means 
clustering. Primary and secondary peaks are described in each 
subplot, in terms of % level of daily power consumption and 
hour of occurrence.  

 

After having identified the centroids, frequencies of occurrence of centroids are 
calculated for each household, distinguishing the days before and after the 
arrival of the in-home display. 70 days of data are required to build such 
frequency vectors. If any behavioral change happened in the patterns of daily 
consumption due to the in-home display, this should be reflected in the before-
after difference of such vectors. 

For each household, frequencies of occurrence of centroids are calculated for 
the days before and after the arrival of the in-home display. If there was a 
common trend in behavioral change due to the in-home display, we should see 
a significant change in such frequencies, moving away from some representative 
shape towards other ones. As shown in Figure 19, this is not emerging from the 
data. The average behavior of the sampled clients, as coded in these vectors of 
frequencies, does not change significantly conditionally on having or not a 
display. 
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Figure 19:  Frequencies of occurrence of centroids, averaged across 
clients, to which load shapes before and after the in-home 
display arrival are clustered. Black vertical bars represent 
confidence interval for the means. 

 

Nonetheless, if we plot the change in frequencies before and after the delivery 
of the in-home display for each client, a wide heterogeneity emerges (Figure 20). 
Most households seem to have maintained stable consumption patterns over 
time, as indicated by the mass of the distributions of frequency gravitating 
around 0. Still, several households exhibit much more flexibility in consumption, 
as shown by the long tails of some of the 14 distributions. Overall, the in-home 
display was not consistently able to provide the incentives required for an 
average visible shift of peaks over time, but it did work for a subset of the 
population. This result is consistent with the literature emphasizing the high 
heterogeneity of the impact of real-time feedback programs. 
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Figure 20:  Changes in frequencies of occurrence of centroids, to which 
load shapes before and after the in-home display arrival are 
clustered. Each household corresponds to a series of 14 
points, one per cluster. 

 

5.5 Conclusions 

According to our estimates, which involve 6 alternative plausible statistical 
models, an average reduction in daily power consumption of 0.5-1.9% can be 
attributed to such device, even though with marginal statistical significance. This 
is in line with more recent experimental studies on the topic. 

Average hourly power consumption behavior, measured in terms of distributions 
of preferences for representative load shapes by each user, seems to remain 
unchanged before and after the arrival of the display. Nonetheless, a wide 
heterogeneity has yet to be explained. 

Further data on the households would be useful to try to segment the analysis 
in meaningful groups, identifying those customers for which information 
feedback led to either significantly lower consumption levels or significantly 
different consumption habits. 
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Consumption data at the appliance level would provide invaluable information 
on behavior and behavioral change, even though at the cost of increasing 
computational tractability. 

Results are specific to the group involved in the study, and are not easily 
generalizable to the wider population. The trial was carried out in an area of the 
country with lower than average per capita energy consumption, as well as 
income, allowing for more limited adjustments and investments. On the other 
hand, the sample households appear to have more family members than 
average, possibly young children. Future better experimental designs will also 
help to avoid issues of sample representativeness and absence of control group. 

All these potential steps for further research could lead to a better 
understanding of how such interventions perform at large scale, and whom these 
interventions could be most beneficial for. 



 

Deliverable 4.2 Impact assessment of household-level behavioral 
interventions via smart-meter data 

 

 

59 

6. Polish case study 

6.1 Introduction 

Different households have different propensity to save energy (Long, Mills, and 
Schleich 2018). This observation leads to a conclusion that for some households, 
behavioral measures will not have a positive influence on their energy 
consumption, while for others the observed impact could be significant. A 
rational policy choice would be to allocate public resources (e.g., funding for a 
behavioral change program) to households, who are likely to benefit from the 
intervention. An important research question arises: how to consider the 
different effectiveness rates of behavioral change measures for different groups 
of households? 

In the Polish case study we investigate the impacts of a behavior change program 
on energy savings in clusters of households from treatment and control groups 
(i.e., households who participated in the program and those who did not 
participate in the program), using unsupervised machine learning based on k-
means algorithm. As a result, we provide smart-meter data-based inputs for 
energy-demand modeling, i.e., profiles of hourly differences between the energy 
consumption in different clusters of households – both participating and not 
participating in the behavior change program aimed at energy savings. Our 
results inform energy models of common barriers to modeling of energy 
consumptions behaviors, such as variations in responses of households to 
programs aimed at changing residential energy consumption patterns. We also 
propose potential ways for overcoming these barriers, through modeling of 
behavior change measures taking into consideration their different impacts on 
different groups of households. 

6.2 Methods and data 

The dataset from Poland includes hourly smart meters readings of electricity 
consumption from 1489 households, from March 1st-31st, 2017, i.e. during the 
behavioral change program implemented between September 2016 and 
November 2017. 1,271 households participated in the experiment and 218 were 
the control group. The socio-economic characteristics of both groups are similar 
in terms of the age, apartment size, and number of individuals living in a 
household. Households were recruited during the “door-to-door” campaign, i.e. 
they were visited by interviewers and asked for a consent to participate in the 
experiment and share their electricity consumption data. The dataset covers 
only apartments located in blocks of flats (no single-family houses). In all flats, 
space and domestic hot water are heated from the district heating network, 
which translates to the fact that electricity is not used for those purposes. Also, 
air conditioning is rather rare. For cooking, mainly natural gas is used, however, 
it cannot be excluded that some of these flats are equipped with electric cookers 
and ovens. Electricity is mainly used for lighting and powering of appliances.  
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Within the behavioral change program “Step by step commitments to energy 
savings”, the targeted households were regularly contacted through email or by 
phone and encouraged to try new ecological changes in their behavior related 
to energy consumption. The encouragement went beyond standard one-way 
communication techniques, as households were asked to make a commitment 
to perform specific self-selected tasks and after two weeks were asked if they 
succeeded and depending on the answer, another or the same activity was 
proposed to strengthen the initial commitment. 

6.3 Results 

All statistical features (minimum value, 1st quartile, median, mean, 3rd quartile, 
and maximum value) for the daily consumption (00:00-23:59) have lower values 
in the treatment group (Table 6), compared to the control group (Table 7), 
however differences between values observed at night (23:00-4:59) are not 
statistically significant (p-value > 0.05).  

The impact of the program on energy consumption resulting from the behavioral 
intervention seems to differ throughout the day (Figure 21 and Figure 22). 
Negligible changes (statistically insignificant, i.e., p-vale > 0.05) are observed at 
night (23:00-4:59). This suggests that the behavioral change program had no or 
minimal effect on the baseline energy consumption related to using appliances 
that require continuous powering such as a fridge. Starting from 5:00, energy 
savings starts to grow. In fact, the biggest savings, are observed in the morning 
(between 5:00 and 7:59) and in the evening (16:00-21:59) and are significantly 
lower in the middle of the day (8:00-15:59) and at late evening (22:00-22:59). 
This reflects the regular activity level of a typical household, which spends most 
of the day outside (work, school etc.), leaving its apartment in the morning and 
coming back in the afternoon. On average, energy savings in the Treatment 
Group reached 4.19% (±2.71pp), compared to the Control Group.  

Despite the total daily consumption decreases, there are periods when hourly 
consumption grows, especially the 1st quartile (e.g., at 3:00, 10:00, 22:00, 
23:00). For most hours the highest decrease is observed for 3rd quartile, which 
suggests that the behavioral program had greater effect of households 
consuming more energy, while it is hard to reduce energy consumption in 
household where it is already low only with soft measures such as the 
investigated behavioral program. 

While mean and quartile values show tendencies of a group participating in the 
experiment, minimum and maximum values reflect behavior of individual 
households. There is almost no statistically significant difference between the 
treatment and the control group in terms of minimum energy consumption 
(Figure 23). In both groups, for all hours, the minimum consumption does not 
exceed 0.008 kWh, which is very low. On the other hand, the maximum energy 
consumption in the treatment group is higher in all hours but five (8:00, 10:00, 
15:00, 20:00, and 23:00) (Figure 23). This might suggest that there are 
households that are resistant to behavioral change program and despite the 
proposed measures, their energy consumption not only does not drop, but even 
grows. Another possible explanation is that even if a decrease of energy 
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consumption is observed in a longer period such as a full day, local increases of 
energy consumption in selected hours occur. 

Table 6:  Statistics of the daily electricity consumption – Treatment 
Group [kWh]. 

Hour Minimum  1st Quartile Median Mean 3rd Quartile Maximum 

00:00 0.001 0.068 0.107 0.143 0.174 2.990 

01:00 0.001 0.060 0.091 0.116 0.138 1.826 

02:00 0.001 0.058 0.086 0.102 0.124 1.285 

03:00 0.001 0.057 0.083 0.097 0.120 1.493 

04:00 0.001 0.057 0.085 0.099 0.123 1.502 

05:00 0.001 0.061 0.093 0.116 0.138 1.716 

06:00 0.002 0.069 0.110 0.147 0.177 1.771 

07:00 0.001 0.079 0.126 0.172 0.204 2.583 

08:00 0.001 0.084 0.136 0.189 0.221 2.437 

09:00 0.001 0.085 0.141 0.200 0.235 2.911 

10:00 0.002 0.083 0.140 0.200 0.235 2.500 

11:00 0.003 0.080 0.135 0.196 0.228 2.624 

12:00 0.002 0.079 0.135 0.196 0.227 2.692 

13:00 0.003 0.081 0.138 0.201 0.234 3.052 

14:00 0.003 0.086 0.145 0.209 0.243 3.717 

15:00 0.003 0.092 0.155 0.219 0.259 2.633 

16:00 0.001 0.104 0.176 0.239 0.286 3.788 

17:00 0.003 0.127 0.211 0.276 0.337 2.903 

18:00 0.003 0.159 0.256 0.320 0.399 3.062 

19:00 0.007 0.179 0.278 0.340 0.425 2.936 

20:00 0.004 0.182 0.275 0.334 0.415 2.710 

21:00 0.003 0.163 0.249 0.301 0.372 2.844 

22:00 0.002 0.126 0.203 0.249 0.311 2.846 

23:00 0.001 0.087 0.145 0.189 0.239 2.349 

00:00 – 23:59 1.114 3.171 4.391 4.851 6.043 14.592 

 

Table 7: Statistics of the daily electricity consumption – Control Group 
[kWh]. 

Hour Minimum  1st 
Quartile 

Median Mean 3rd 
Quartile 

Maximum 

00:00 0.004 0.069 0.107 0.144 0.175 1.752 

01:00 0.004 0.062 0.092 0.114 0.138 1.547 

02:00 0.004 0.058 0.086 0.102 0.126 1.119 

03:00 0.003 0.056 0.083 0.097 0.119 1.077 

04:00 0.003 0.057 0.085 0.100 0.124 0.926 
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Hour Minimum  1st 
Quartile 

Median Mean 3rd 
Quartile 

Maximum 

05:00 0.004 0.063 0.095 0.122 0.145 1.685 

06:00 0.001 0.074 0.116 0.159 0.195 1.688 

07:00 0.004 0.083 0.134 0.181 0.215 1.745 

08:00 0.003 0.084 0.140 0.195 0.234 2.805 

09:00 0.002 0.085 0.145 0.210 0.247 2.629 

10:00 0.001 0.082 0.142 0.205 0.246 2.606 

11:00 0.002 0.081 0.137 0.201 0.242 1.901 

12:00 0.002 0.081 0.137 0.200 0.239 2.379 

13:00 0.001 0.082 0.141 0.208 0.242 2.489 

14:00 0.003 0.087 0.147 0.215 0.253 3.324 

15:00 0.004 0.092 0.158 0.226 0.271 2.793 

16:00 0.002 0.105 0.183 0.253 0.304 2.653 

17:00 0.006 0.131 0.223 0.295 0.361 2.794 

18:00 0.008 0.168 0.270 0.340 0.424 2.547 

19:00 0.008 0.187 0.291 0.355 0.441 2.576 

20:00 0.007 0.187 0.285 0.346 0.427 3.413 

21:00 0.006 0.166 0.257 0.313 0.390 2.582 

22:00 0.004 0.125 0.206 0.255 0.326 2.335 

23:00 0.001 0.086 0.142 0.189 0.243 2.395 

00:00 – 23:59 1.115 3.339 4.631 5.023 6.283 14.599 

 

Figure 1:  Difference of statistical features between treatment and 
control group [kWh]. 
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Figure 2:  Difference of statistical features between treatment and 
control group [%]. 

 

 

Figure 3: Difference of statistical features between treatment and control group 
[kWh]. 

 

Clustering of the daily electricity consumption, following to the approach 
presented in the previous deliverable of newTRENDs project, Deliverable D5.1 
(Marangoni et al. 2022), shows three distinct consumption patterns (Figure 24). 
Cluster A is characterized by low consumption at night and high in day, with 
morning (10:00) and evening (20:00) peaks. Cluster B is characterized by low 
consumption throughout the day, and even lower in night. No distinct peaks are 
observed. Cluster C is characterized by moderate consumption in the night and 
in the morning, with the energy consumption starting to rise at 16:00 and 
reaching its peak at 21:00. It is important to mention that assignment to the 
cluster is done based on a daily consumption pattern, so it can change on daily 
basis. In fact, each household from both treatment and control groups was 
assigned to each cluster at least once. 
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Figure 4:  Clusters obtained with k-means for the Polish dataset in March 
2017. The y-axis represents normalized energy consumption, 
and x-axis – subsequent hours of a day. 

 

In the treatment group, Cluster C occurs most often (36.2%), and is followed by 
Cluster B with a slightly lower share (35.8%) (Figure 25). Cluster A is the least 
frequent (28.0%). In the control group shares of clusters C and B decreases in 
favor of Cluster A (36.0%, 35.3%, 28.7%, respectively), however, the order 
remains. The observed shift from Cluster C to A suggests that due to the 
intervention electricity is consumed in more steady way – the evening peak is 
shaved, while the afternoon consumption rises. 
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Figure 5:  Cluster frequency in treatment group, before and after 
behavioral intervention. 

 

At a first glance, there are no significant differences between the load profile of 
treatment and control groups, neither in terms of the peak amplitude nor time 
of their occurrence (Figure 24). Hourly analysis, however, shows that there are 
variations between two groups within clusters (Figure 26). In cluster A we can 
observe a peak shaving in the treatment group, compared to the control group 
– energy consumption drops at night and in early morning (up to 7:59), then 
rises until 18:59, and again shrinks until midnight. The opposite situation is 
observed in cluster B. Energy consumption lowers between 6:00 and 18:59 and 
grows in other periods. Interestingly, in cluster C the energy consumption 
unequally rises the whole day, the most dynamically in the evening (between 
18:00 and 20:59). 

Figure 6:  Difference in the clusters shape between treatment and control 
group [unit: none (normalized data)]. 
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6.4 Conclusions 

In this case study we provide a smart meter-based quantitative assessment of 
differences between the energy consumption in several clusters of households – 
both participating and not participating in the behavior change program aimed 
at energy savings. These results, especially the presented differences in daily 
energy consumption profiles, inform energy models of the potential variations 
in responses of different households to programs aimed at changing residential 
energy consumption patterns. Consideration of these differences should result 
in a better reflection of household behavior in the modeling of behavioral change 
programs’ impact on energy demand in the residential sector. 
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7. Conclusions 

In this report we explore the effect of behavioral interventions on households' 
power consumption using a variety of approaches including novel ML 
techniques. In particular, we extensively use unsupervised clustering algorithms 
(e.g. K-means) to assess the impact of Home Energy Reports, COVID lockdowns 
and in-home displays for real-time consumption feedback in terms of variations 
of daily patterns of power consumption. We identify the effectiveness of the 
treatment, using both traditional regression and clustering. We show how 
clustering allows us to get more insights into the impact of the interventions, in 
terms of change in daily patterns of consumption. The detected reduction in 
consumption from behavioral intervention was in general low, and more 
household data are necessary to properly assess the response within specific 
household subgroups. 

In the section on methodology (section 3), we describe multiple ways in which 
ML could be useful for assessing the impact of interventions on power 
consumption via smart meters data, and in a few cases these novel approaches 
have already been successfully applied. ML could be helpful to improve impact 
evaluation and to overcome limitations, but in general appropriate data 
availability is crucial.  For example, in cases in which a control group is not 
available, ML techniques are very valuable to build counterfactuals by forecasting 
time series (Prest et al. 2021). A necessary condition to forecast time series is 
the availability of sufficiently long pre-treatment period, covering at least one 
year for analyses involving yearly trends.  Another important application of ML 
is the evaluation of heterogeneous treatment effects, where methods such as 
causal forests give accurate and unbiased assessment of the CATE (Andor et 
al.2020). Also in this case, it is important to have enough households' data for 
each combination of household characteristics.  

Starting from the work presented in this report, we can envision different steps 
ahead, especially within the research agenda of the newTRENDs project. First, as 
novel smart-meter data become available from utilities, the methods presented 
could be applied to detect energy demand responses to interventions 
implemented by the utilities themselves, or to relevant events that might have 
shocked energy consumption behavior in the recent past, like the stark increase 
in electricity prices, as well as policies and trends related to the pandemic or the 
energy sector. These analyses might inform future energy scenarios, where for 
example prices continue to raise, remote work becomes wide-spread, or smart 
grids, digitalization, prosumaging, and electric vehicles affect more and more 
how households consume power. Second, case studies from different regions 
and projects (e.g. the WHY project) could be brought together for a joint analysis, 
reflecting on how similarly designed behavioral interventions might yield 
different results in different regions, and what barriers and success factors drive 
the outcome of different interventions. Lastly, inputs from this task should also 
feedback into the modeling stream of work, helping modelers with validation 
and calibration of household consumption behaviors, and providing sensible 
ranges of expected energy demand changes attributable to behavioral levers. 
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The increasing scientific research on these topics and the development of 
machine learning methods addressing impact evaluation are helping to get the 
greatest possible value out of the large data ensembles available today. This in 
turn supports modelers and policy makers to successfully navigate the many 
possible assumptions in deriving empirically informed policies from those 
ensembles. 
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