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Preface 

Traditional silo approaches, where stakeholders manage their own data, must be replaced by digital and 

smart buildings, merging heterogeneous data sources, and placing the stakeholders at the core of these 

buildings. DigiBUILD will catalyse this much-needed transformation by making use of high-quality data 

and next generation digital building services, supporting the deployment of EU-wide Framework for a 

Digital Building Logbook.  

An inclusive environment for multi-stakeholder knowledge exchange (based on European Bauhaus 

initiative) will be applied to co-design end-user-oriented services. DigiBUILD will provide an open, 

interoperable and cloud-based toolbox to transform current ‘silo’ buildings into digital, interoperable 

and smarter ones, based on consistent and reliable data, and support better-informed decision-making 

for performance monitoring & assessment, planning of building infrastructure, policy making and de-

risking of investments. It will be built on top of existing platforms and common EU initiatives, aiming at 

an Energy Efficient Building Data Space, based on standard cloud-data platform frameworks (FIWARE) 

and Data Space initiatives (GAIA-X and IDSA). On top of this advanced data governance framework, we 

will create AI-based data analytics and Digital Building Twins based on high-quality data, aiming at 

facilitating transparency, trust, informed decision-making and information sharing within the built 

environment and construction sector, which will be deployed across 10 real-world conditions (TRL 8). 

DigiBUILD will contribute to the uptake of digital technologies in the build sector to better align the EU 

Member States’ long-term renovation strategies with the EPBD requirements on decarbonisation, and 

on a path towards a climate-neutral building stock by 2050. 
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Executive Summary 

Deliverable 3.2 aims at providing an update on the developmental activities undertaken within Work 

Package 3 (WP3) of the DigiBUILD project, titled 'DigiBUILD AI-based Data-driven Services for the Built 

Environment'. It represents the second instalment in a tripartite series of DigiBUILD services, which 

collectively aim at chronicling the research and development progress of AI-infused and data-driven 

methodologies and implementations throughout the project's timeline (Months 12, 20, and 28). These 

services are categorised into five principal domains, addressing (1) AI-based data analytics for high-

calibre, (2) data-driven energy management, (3) the construction of energy-efficient and comfortable 

buildings, (4) data-driven strategies for renovation roadmaps and energy-efficient financing, as well as 

(5) decision-making processes under uncertainty for the creation of efficient and climate-resilient 

buildings. 

The report offers a detailed technical description of the services under development and their role within 

the built environment, presenting innovative solutions and approaches. The focal point of the document 

is to relay detailed information on the developmental progress achieved up to the 20th month of the 

project, including their implementation in the DigiBUILD pilot schemes. Lastly, the document outlines 

forthcoming steps for the subsequent months of the project, culminating in a key milestone at month 

28, where the developmental activities are expected to conclude, leading to the unveiling of the 'Third 

Wave' of DigiBUILD AI-based Data-driven Services for the Built Environment.
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1 Introduction 

1.1 Purpose and audience of the document 

Deliverable 3.2 is an essential update on the progress of AI-based and data-driven services within the DigiBUILD 

project from month 12 to month 20. It extends the foundation laid in the initial report, delving into the 

advanced stages of integrating these innovative services into the built environment. The report explores the 

evolved architecture of the AI-based services, highlighting their enhanced data integration with the DigiBUILD 

Data Lake and the improved mechanisms for data exchange and service integration. A significant focus is 

placed on the methodological progress, detailing the novelty of the services, the development progress, the 

practical application of these methodologies in the DigiBUILD pilots, and the future trajectory. 

1.2 Relation to other activities 

The report on AI-based data-driven services within the DigiBUILD project exhibits significant interdependencies 

with various other work packages (WPs), highlighting the integrated and collaborative nature of the project. 

These interrelations are crucial for the cohesive development and implementation of the services and are 

detailed as follows: 

• WP1 - DigiBUILD user’s stories, data requirements & specifications through co-creation with 

stakeholders: The AI-based and data-driven services are intrinsically linked to Task 1.3, which focuses 

on the "Co-design of the DigiBUILD use-cases and smart energy services for high-quality building 

stock performance." This task is foundational in defining the user requirements and use cases that the 

AI services aim at addressing and solving. The development of these services is directly influenced by 

the needs and scenarios outlined in this task, ensuring that they are user-centric and tailored to real-

world applications. Furthermore, an additional critical aspect of the AI service development is their 

alignment with the principles and guidelines outlined in D1.4 - "DigiBUILD Data Protection and Cyber 

Security." This document is integral to ensuring that all AI-based services adhere to the highest 

standards of data protection and cyber security, a paramount concern in today's digital landscape. 

Additionally, the design and architecture of the AI services play a crucial role in Task 1.5, which deals 

with the "Architecture definition from existing building data reference platforms." Deliverable D1.5 

provides a comprehensive description of how these services are integrated into the overall DigiBUILD 

architecture. This integration is vital as it aligns the AI services with existing data platforms, enhancing 

their capabilities and leading to a more robust and efficient building data management system. 

• WP2 - DigiBUILD Data Interoperability & High-Quality Data: A critical aspect of the AI services is 

the acquisition of data, which is primarily sourced from the project's Data Lake. This aspect aligns with 

WP2, focusing on "DigiBUILD Data Interoperability & High-Quality Data." The synergy between WP2 

and the AI services is essential, as the quality and interoperability of data directly impact the 

effectiveness and accuracy of the services. Furthermore, the procurement of data from the DigiBUILD 

Data Lake is accomplished utilising the data sharing tool that was developed in the context of Task 2.6 

and based on the DigiBUILD ontologies and data model which is serving as a federation and data-

integration-enabling component.  

• WP4 - Digital Twins and Cloud-Based DigiBUILD Data Toolbox: The services have a strong 

correlation with WP4, which encompasses "Digital Twins and cloud-based DigiBUILD data toolbox." 
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Most of the developed services are intended to be utilised by the digital twins created for each pilot 

within the project. This integration allows for a more comprehensive use of the AI services, enhancing 

the capabilities of the digital twins and providing more nuanced insights into building performance. 

• WP5 - Demonstration of DigiBUILD in buildings across Europe: The primary objective of the 

services developed, as detailed in this document, is their application within the respective Pilot Clusters 

outlined in Work Package 5 (WP5). This endeavour aims at bolstering the arsenal of the pilots, 

facilitating the attainment of not only their energy targets but also of other specified goals. This is to 

be achieved through the utilisation of smart algorithms, designed to assist in meeting the objectives 

established by the Key Performance Indicators (KPIs) set forth in WP5. 

In summary, the AI-based data-driven services described in this deliverable are designed to utilise data from 

the project's pilots (WP2 relation) to develop methodologies and algorithms that can more effectively exploit 

building systems through Digital Twins (WP4 relation). This is done to meet and exceed the user requirements 

identified in WP1, demonstrating a holistic and integrated approach to enhancing building performance within 

the DigiBUILD framework. 

1.3 Structure of the document 

The structure of the document detailing AI-based data-driven services in the DigiBUILD project is designed to 

provide a comprehensive and systematic exploration of various services and their applications. It is organised 

into several key sections, each focusing on a distinct aspect of the AI-based services and their implementation. 

Section 2 delves into the final version of the architecture of AI-based data-driven services, providing insights 

into the foundational framework and technical underpinnings of these services. 

Section 3 is dedicated to AI-based services for finer-grained energy profiling and forecasting. This section is 

further subdivided into four subsections, each detailing a specific service, namely: (1) Performance monitoring 

and benchmarking, (2) Energy performance prediction, (3) District network production forecasting, and (4) 

Energy forecasting. Each of these subsections includes a detailed description of the service, its novelty, current 

development progress, application on DigiBUILD pilots, and next steps for further development. 

Section 4 explores data-driven services for energy resource management. This section encompasses several 

services, including (1) Pro-active maintenance and facility management, (2) District network production 

economic optimization, (3) Power recharging management, (4) Energy vs e-mobility package, (5) Carbon-free 

buildings, and (6) Optimal electric or thermal load management. Similarly, to Section 3, each service in this 

section is elaborated upon in terms of its description, novelty, development status, application in DigiBUILD 

pilots, and future directions. 

Section 5 focuses on data-driven energy and non-energy services for enhanced comfort and people well-

being. It consists of two services: Enhanced comfort and well-being and Comfort Performance Contract. Each 

service is described in detail, followed by its novelty, development progress, application in DigiBUILD pilots, 

and upcoming steps. 

Section 6 addresses data-driven services for renovation roadmaps and energy efficiency financing. It includes 

services related to Energy efficiency financing and policymaking and One-stop-shop energy efficiency hub, 

with each service section following the same detailed structure as previous sections. 

Section 7 presents a decision-making under uncertainty tool for efficient and climate-resilient buildings. This 

section provides an in-depth look at the service aimed at enhancing building efficiency and resilience in the 
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face of climate change. 

Finally, Section 8 concludes the document and outlines the next steps. This section summarises the findings 

and progress detailed in the previous sections and provides a forward-looking perspective on the future 

developments and applications of these AI-based services in the DigiBUILD project. 

Throughout the document, each section meticulously details the service development and application, 

ensuring a thorough understanding of their impact and potential within the DigiBUILD framework. 
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2 Architecture of AI-based data-driven services (Final 

Version) 

One of the fundamental objectives of DigiBUILD is the development of data-driven services, aimed at 

empowering the built environment and its stakeholders. These services are designed to facilitate informed 

decision-making and efficient management of energy and non-energy assets. The delivery of service outputs 

to users is accomplished through two primary means: Digital Twins and specialized graphical user interfaces 

(GUIs) that are custom-developed to meet the specific needs of the services and their users. For effective and 

consistent communication between users and services, or through the Digital Twins, it is imperative to establish 

a uniform approach to development. This requirement is fulfilled by the AI service architecture delineated in 

this chapter, which outlines the communication protocols both with the individual technical work packages of 

the project and internally, to ensure the correct flow of information. 

In response to user and technical requirements identified in the WP1 work packages, the WP3 architecture has 

been segmented into four principal entities/levels, each defined by its functionality and purpose. These are: 

 Artifacts Layer: This layer offers developers a suite of specialized tools for the appropriate training, 

storage, and reuse of models developed within the WP3 workflows. 

 Intelligence Layer: Constituting the core of the data-driven services, this layer encompasses the 

development of model building algorithms, optimization algorithms, and the necessary algorithms 

and applications for WP3's simulation services and MCDA (Multi-Criteria Decision Analysis) services. 

 Interface Layer: Here, the GUIs necessary for the direct pipelining of services and information to the 

user are developed. 

 Serving Layer: This layer involves the creation of appropriate APIs to facilitate the utilization of 

algorithms and models by the Digital Twins. 

It is also pertinent to highlight the Business Intelligence Layer and the Digital Twin Suite, which serve as 

interfaces to WP2 and WP4, respectively. The Business Intelligence Layer is instrumental in collating the data 

necessary for the services from the DigiBUILD Data Warehouse, which is then employed by the data-driven 

algorithms. Conversely, the Digital Twin Suite functions as the interface to WP4 and the corresponding Digital 

Twins of the pilots, for which intelligent services are developed. 
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Figure 1: WP3 final architecture 
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Figure 1 delineates the comprehensive and final architecture of WP3, with which service developers are 

required to align. This ensures the delivery of homogenous solutions, facilitating their future utility and 

exploitation. Each layer within this architecture incorporates specific components, aligned with their respective 

tasks and functionalities: 

 Intelligence Layer: 

• Learning Services: These encompass trained models developed under T3.1 - "AI-based services for 

more detailed energy profiling and forecasting" and T3.3 - "Data-driven energy and non-energy 

services for greater comfort and well-being". 

• Optimization Services: Services and modules emerging from T3.2 - 'Data-driven services for energy 

resource management'. 

• Simulation Services: Services formulated under T3.4 - 'Data-based services for renovation 

roadmaps and energy efficiency financing'. 

• MCDA Services: Multi-criteria decision support services for climate resilient buildings, resulting 

from T3.5 -"Decision-making tools under uncertainty for efficient and climate-resilient buildings". 

 Interface Layer: 

• Pop-up Notification System: This is an additional graphical user interface (GUI) designed to 

enhance data-driven energy and non-energy services, aimed at improving comfort and well-being 

by collecting thermal comfort data from users. 

• HVAC Assessment Tool: Provides insights to end users, particularly for buildings not specified for 

Digital Twin representation, notably in Pilot 8 (IEECP) and Pilot 9 (NTUA). 

• Climate Resilient Buildings Assessment Tool: A frontend application offering MCDA services to 

end-users. 

• One-Stop Service User Interface: A front-end application supporting the one-stop service. 

• Visualization Engine: A front-end application utilized by DigiBUILD end-users for visualizing data 

stored in the DigiBUILD Data Lake. 

 Serving Layer: This layer includes appropriate API applications, channelling learning results and 

optimization services to the respective Digital Twins. 

This structured architecture exemplifies a well-organized approach to delivering AI-based and data-driven 

services in DigiBUILD, ensuring seamless integration and functionality across various components and layers. 
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3 AI-based services for finer-grained energy profiling 

and forecasting 

Energy usage optimization and performance enhancement in buildings is essential, and Machine Learning can 

be an efficient and powerful weapon towards that. In this context, the services presented in the following 

section are specifically designed to address various facets of building energy management, including 

performance monitoring, benchmarking, energy performance prediction, and district network production 

forecasting. The aim of these services is to develop models that produce accurate forecasts and contribute to 

sustainable energy management. By using data from each pilot, each service will demonstrate its capabilities 

in monitoring and improving energy efficiency, while also offering insights into user behaviour and system 

optimization. The contribution of this research lies in its innovative application of ML algorithms to predict and 

manage energy usage in buildings, providing a roadmap for smart and energy-efficient building operations. 

3.1 Performance monitoring and benchmarking (s3.1.1) 

3.1.1 Description of the Service 

The high amount of energy used in buildings has raised concerns regarding whether it aligns with their actual 

requirements. To enable this assessment, it is necessary to establish benchmarks, so that energy performance 

can be monitored, and an energy-efficient consumption strategy can be provided. 

The main objective of this service is to provide energy consumption predictions and forecasts to monitor and 

compare the actual energy performance of the building under study with that of similar buildings or areas. The 

literature on this topic is extensive, especially with the use of deep learning and neural networks (1) (2) (3), and 

different benchmarking approaches will be adopted in parallel depending on the pilot under study. 

For the NTUA and IEECP pilots, s3.1.1 involves monitoring the performance of the installed AC systems and 

supporting decisions related to the replacement of inefficient equipment with new devices of a higher energy 

class. Specifically, the service processes and analyses electricity consumption data collected from sensors 

installed at the AC electricity supply lines and correlates them with the respective indoor and outdoor 

temperature measurements. To that end, the heating and cooling hours are precisely identified for each room 

(considering the occupancy of the rooms and the behaviour of their users) and the annual energy used for 

heating/cooling the building is accurately measured. Based on the above, indicative AC replacement scenarios 

can be evaluated, i.e. actions where the existing AC systems are being replaced by new ones of higher SCOP 

(Seasonal Energy Efficiency Ratio – cooling efficiency) and SEER (Seasonal Coefficient of Performance – heating 

efficiency) values. By assuming a reasonable investment cost per scenario and estimating the energy that could 

potentially be saved after upgrading the equipment based on current or predicted electricity prices, the 

payback period of the investment is computed and cost-efficient retrofitting actions (e.g. payback period is 

less than 3 or 5 years) are identified. Note that, due to its nature, the engine of the service can also be exploited 

to provide further useful insights about the thermal comfort of the users, benchmarking their behaviour, and 

evaluating if the AC systems are rationally used. An overview of the service architecture is provided in Figure 

2. 
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Figure 2: Overview of s.3.1.1 architecture (AC systems monitoring and replacement analysis). 

Note that s3.1.1 is currently expanded to also serve the needs of the FVH pilot. To that end, the pilot data have 

been collected and pre-processed, resulting in a high-quality dataset that represents the total electricity 

consumed in the pilot building per sector, floor, and room. Data pre-processing and cleaning has taken place 

to ensure the quality of the data and identify correlations between loads, trends and seasonal patterns. 

Additionally, suitable time series forecasting methods like SVM, Linear Regression, Exponential Smoothing, 

Moving Averages, AutoRegressive Integrated methods (ARIMA) and neural networks have been examined with 

the objective to generate reconciled forecasts for the complete hierarchy of loads, i.e. to ensure both accuracy 

and coherence. After examining the stated methods and considering the characteristics of the dataset, a neural 

network, tasked to generate reconciled forecasts for the complete hierarchy, is being developed to allow the 

inclusion of external variables (e.g. weather) and identifiers (e.g. room, section, floor, and load type), while 

supporting cross- and transfer-learning. When complete, the service will be capable of effectively supporting 

hierarchical forecasting tasks, in addition to the individual time series forecasting capabilities provided by 

s3.1.4, and, thus, extend the novelty and the range of application of the DigiBUILD services. 

The neural network’s architecture is designed for time series forecasting, while also integrating additional 

information about the floor, section and room of each individual time series. The architecture is depicted in 

Figure 3. The model initiates with an input layer of 168 x 97, since 97 different time series are being used and 

for each of them a window of 1 week (168 hours) is being utilised to predict the output. The time series’ length 

is 5 months which is then split into testing (3 weeks of data) and the rest for training (75%) and validation 

(25%). After the data has been scaled, it goes through three hidden layers, each consisting of 252 neurons and 

employing a ReLU activation function. These layers are used to capture the complex, non-linear characteristics 

of the time series. The second hidden layer is also accompanied by a dropout layer to prevent overfitting during 

training. In parallel to this, there is an additional feature layer with two neutrons that represent the floor and 

the section of each time series. These neurons then pass through an embedding layer, which is flattened to 

make the data suitable for processing in dense layers. These two parallel outputs are then concatenated to 

achieve the fusion of the categorical features. Finally, after another dense layer, the predicted energy 

consumption of 24 hours for each window is computed. To further improve the prediction accuracy and take 

advantage of the hierarchical structure of the time series, the predicted output is then fed into a reconciler.  
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Figure 3: Neural network architecture for FVH pilot. 

The performance monitoring and benchmarking service will provide support to reduce the consumption of 

buildings following a data-driven approach and using ML-based algorithms. Based on the available information 
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and the connection with other identified WP3/4 services, which differ depending on the pilot (s3.2.1 Pro-active 

maintenance/facility management, s4.1.1 Digital Twin for designing future buildings and s4.3.1 District Digital 

Twin infrastructure), a tailored approach for the specific pilots will follow, considering different prediction 

horizons. In terms of architecture, the following aspects are mentioned: 

 The tasks of model creation and training will be covered by the back-end environment. Models will be 

re-trained according to specific needs, stored in a repository and applied to obtain new predictions. 

The models will be accessed via REST APIs. 

 The new calculations will be offered to users in a transparent way, whereby the user will only select the 

specific parameters to be used for the predictions, and explicit aspects if any (prediction horizon, 

preferred model). The models will be re-trained based on historical data from the corresponding Data 

Marts in the final implementation, whereas in this phase they will be based on the historical data 

samples.  

 Performance metrics connected to the available models and other specific calculations connected to 

the established benchmarks will also be accessible via an endpoint. 

The outputs of the models will be used in the aforementioned services with the specifications provided via an 

API, and the final results will also be integrated in the corresponding versions of the Digital Twins (front 

environment). The service is developed using Python, taking advantage of several libraries for the development 

of ML algorithms (NumPy, Pandas, SciPy, Scikit-learn) and for the visualisation of data during the exploration 

phases The building blocks of the architecture can be seen in Figure 4. 

 

Figure 4: Overall architecture of s3.1.1 Performance monitoring and benchmarking 

3.1.2 Novelty 

This service is applied within a wide set of pilots, and the approach taken in each of them varies, firstly due to 

the characteristics under analysis, and secondly due to the main expectations of each pilot. In general terms, 

the aim is to model energy-related parameters at different scales, and to compare these predictions with real 

data from the building under study and other similar buildings, to draw conclusions. The way in which this 

assessment is carried out will differ between pilots, as has been done for the NTUA and IEECP pilots, which are 
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the most advanced in terms of development. In these instances, the possible replacement of existing systems 

with more efficient ones is assessed, to mitigate the risks associated with energy efficiency investments. 

Although the literature involves many methodological approaches for evaluating the impact of renovation and 

retrofitting actions in buildings, most of them are based on special simulation tools or building energy 

modelling software, such as Energy Plus, OpenStudio, eQuest and DesignBuilder (4) (5). These approaches can 

provide accurate results, but they depend on detailed input data, including information about the structure of 

the building, the materials used for its construction and insulation, as well as the installed mechanical and 

electrical equipment, among others. In this regard, evaluating the potential of said actions can become 

particularly time-consuming or even impossible for cases where the required data cannot be collected 

accurately. On the other hand, approaches that estimate energy savings based on survey and literature review 

data may provide insights that cannot be safely generalised for all buildings, often overlooking building 

particularities such as building occupancy and user behaviour. In this regard, the novelty of the developed 

service lies on its wide applicability, ease-of-use, and data-driven approach. Given data solely collected from 

smart meters and sensors, the service can accurately estimate the utilisation of AC systems at heating and 

cooling periods, approximate the efficiency of the infrastructure for each room separately, and compute 

potential energy savings. Moreover, it can serve as a basis for further analysis and monitoring focusing on the 

rational use of the systems and the thermal comfort of the building users. In addition, the service can be used 

to validate the results of building energy modelling software, providing a more data-driven assessment over 

their results. 

As far as the hierarchical forecasting model developed for the FVH pilot is concerned, the novelty of the service 

lies on the construction of a global forecasting approach that can accurately predict multiple series which 

represent different types of loads at different spaces of the building, while ensuring coherent results. 

Conventional forecasting approaches involve the prediction of each load individually. Since said forecasts are 

not necessarily coherent, coherency is typically ensured through a 2-step process that employs some 

hierarchical reconciliation method, such as the bottom-up, top-down, or middle-out methods. On the contrary, 

s3.1.1 opts to achieve coherency through a 1-step process where hierarchical information (e.g. type of load, 

room, floor) is shared within the model to enhance its performance and simplify the overall forecasting process. 

3.1.3 Development Progress 

Some preliminary results of the exploratory data analysis and first modelling activities for the NTUA pilot were 

presented in D3.1. In general terms, work during the current phase has focused on data exploration and 

correlation of datasets, definition of the approach and modelling. 

Activities during the second release for the UCL pilot have focused on conducting a thorough analysis of 

available information, gathering requirements from other services and initiating preliminary modelling 

activities. The information considered in this phase corresponds to a subset of zones of the One Pool Street 

building. 

Due to an internal communication limitation in the IT infrastructure in one of the buildings, the monitoring 

infrastructure remains non-operational, even though all sensors are installed. In another building, there are still 

some minor modifications pending for the deployed infrastructure that will provide real-time data. This lack of 

data has delayed the implementation of the service which is scheduled for the next release. 

The FOCCHI pilot activities have been developed in parallel, in terms of data exploration and first model 

development for PV production. The results have been validated using the most common metrics, and the 

models are available via API. The lack of detailed information for the other datasets, such as building 
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consumption at the expected granularity, has delayed other activities, which will be addressed in the next 

version of the technology, as the approach to be taken is still in the definition phase. 

In order to put s3.1.1 in production for the NTUA and IEECP pilot cases, a dedicated API has been developed. 

It retrieves, processes, and analyses the AC consumption data, by also identifying heating/cooling hours, and 

examining the efficiency of the systems based on correlation analysis. Additional APIs have also been 

developed to execute the evaluation of the equipment replacement scenarios, monitor the thermal comfort of 

the users, and assess the use of the systems in terms of rationality.  

Currently, a GUI has also been developed to allow the users of the service to interact with its results, to adjust 

its parameters and inputs (details of installed AC systems, electricity cost, efficiency and cost of new AC systems 

are reported), and to facilitate monitoring through visualisations and detailed reports. 

Regarding s3.1.1 for the FVH pilot case, the development progress is still ongoing and is currently focused on 

fine-tuning a NN architecture that will allow to accurately predict multiple hierarchical time series with a single 

global model. This includes the expansion of the model so that exogenous variables and identifiers of the 

building structure are considered when producing the forecasts. At the same time, different modelling 

approaches are being tested to allow the model to result in reconciled forecasts without deterioration in 

accuracy. So far, experimental results support the potential of the suggested approach over conventional 

forecasting approaches. 

The source code can be found on GitΗub: GitHub s3.1.1 

3.1.4 Application on DigiBUILD Pilots 

This service will be implemented and validated in the following pilots: UCL (Pilot 1), IASI&SITTA (Pilot 3), 

FOCCHI (Pilot 5B), FVH (Pilot 7), IEECP (Pilot 8) and NTUA (Pilot 9). Different levels of development run in parallel 

due to the maturity levels in terms of equipment and data access, and more specific information per pilot is 

provided below: 

 Pilot 1 (UCL): the monitoring information available at different scales (building, area and space level) for 

the pilot buildings will be considered. In this phase, activities have started for the research building with 

student residential space in Pool Street West (electricity, cooling, and heating consumption). The results 

of the service will be fed into services s3.2.1 “Pro-active maintenance/ facility management” and s3.2.2 

“Enhanced comfort and well-being”. In addition, the service will be integrated into the District Digital Twin 

(s4.3.1). A set of benchmarks will be defined to provide support to reduce energy consumption. UC_3 

contains specific details of the implementation of s3.1.1 in the UCL pilot (the reader may consult 

deliverable D1.2). 

 Pilot 3 (IASI&SITTA): the aim is to apply the service in administrative buildings where new sensors are 

being installed. Previously, only static data from invoices were considered to assess building performance. 

The corresponding application of s3.1.1 defined in D1.2 for IASI&SITTA can be found in UC_11, and the 

service will be exploited in the Digital Building Logbook. 

 Pilot 5B (FOCCHI): the data from the PV production, the heating and cooling system and Indoor 

Environmental Quality will be exploited to balance energy consumption with RES production and reduce 

energy production and CO2 emissions. At this stage, the activities have exploited the PV production data, 

while other data sources are still being explored. The service will work in conjunction with the service 

s3.3.1 “Enhanced comfort and well-being” and the results will be integrated in the pilots’ Digital Twin 

(s4.1.1 “designing future buildings”). The corresponding use case defined in D1.2 for FOCCHI pilot is 

UC_11. 

https://github.com/digibuild-technology-release/s3_1_1_NTUA
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 Pilot 7 (FVH): data from an office building in Helsinki classified per sector, floor and room will be used 

within s3.1.1. The objective is to predict office usage from available energy consumption data and weather 

information. UC_3 (reported in D1.2 and D1.6) contains specific details of the implementation of s3.1.1 in 

FVH. 

 Pilot 8 (IEECP): the service will be implemented in monitored office buildings in Netherlands, with the 

main goal of predicting energy consumption of these offices one day ahead. Details of the corresponding 

use case can be found in UC_3 for s3.1.1 application in IEECP. 

 Pilot 9 (NTUA): the service will be implemented in an area of an office building which has a BMS. The 

focus is mainly put on the analysis of the electricity consumption collected by the sensors installed in the 

AC systems. By proposing AC replacement scenarios and estimating the potential energy that could be 

saved, a set of benchmarks are established. UC_·3 (D2.1) contains the details of the implementation of 

s3.1.1 for the NTUA pilot. 

Some details of the application of this service during this phase in the different pilots is included below. 

UCL pilot 

Data from the Pool Street West building have started to be analysed for a subset of spaces. Initially, the aim is 

to establish groups of rooms according to their nature, to understand the similarities in terms of information 

to be exploited and, at a later stage, to define a set of benchmarks to monitor performance. 

Initial exploration activities of the provided data and preliminary conclusions are presented below. The studied 

variables are related to comfort, namely temperature (in ºC), occupancy (0-1 values) and CO2 concentration 

(PPMs), and comprehend several rooms across four of the nine floors that the data sample is composed by. 

This study has served as an initial and general procedure to classify the different spaces and rooms which will 

be used later to develop and validate models. 

 

Figure 5: Preview of the studied variables in the UCL pilot (CO2, occupancy and temperature). 

After the aforementioned study, several conclusions can be extracted: One of the most relevant issues with the 

provided data is that data are missing for every variable and sensor over a time period. Specifically, the observed 

data gaps take place on the 1st of August and from the 9th to the 14th of August. An example of this data gaps 

is shown below (values in PPMs). 
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Figure 6: Data gaps in the UCL sample. 

Finally, a first and general classification of rooms has been made according to their behaviour and potential 

use. This enables us to identify which rooms have installed and used AC and which have not over the period of 

time for which data is available. This classification has been developed analysing daily patterns and comparing 

the behaviour of the indoor temperature to the outdoor one acquired from an external and trustworthy 

historical weather source (values in ºC). The following figures showcase in a graphical way the difference of the 

patterns encountered in this analysis. At a later stage, when the energy data is available, it will be studied 

together with the comfort parameters already considered, to extract further insights and start modelling 

activities. 

 

Figure 7: Room temperatures with and without AC in UCL pilot. 

FOCCHI pilot 

During this phase, PV production data has been explored and the first model development activities have been 

carried out. The most common metrics have been used for validation, and the initial version includes Random 

Forest regression and Decision Tree regression. The results show high accuracy, as seen in Table 1. This 

performance information and access to predictions is available through an API. The information on BMS (HVAC 

system and gas boilers) and IEQ is still being analysed, as the data is of different granularity and a final approach 

needs to be consolidated. In addition, synergies with comfort services are being studied to select the most 

appropriate information. During the final release, model training activities for this subset of information will be 

finalised and exposed through the API as has been done for other features. The following figures show the 

results obtained for the PV production. 
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Table 1: Forecasting model results for PV production in FOCCHI. 

Model  R2  MAPE MAE  RMSE  MSE  

Decision tree 0.87 135.32 2.88 6.09 37.18 

Random Forest 0.93 96.71 2.02 4.27 18.27 

  

NTUA pilot 

Up to this point, s3.1.1 for AC monitoring and replacement analysis has been successfully applied on the NTUA 

pilot. Having analysed the data collected from the smart meters and sensors installed in the building, which 

cover a period of approximately 1.5 years, the service identified potential (payback period of investment is 

equal or less than 5 years) in the replacement of three AC systems in rooms 25, 30B and 30D of the pilot, as 

shown in Table 2. 

Table 2: Results and proposals of s3.1.1 for the NTUA Pilot 
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24 467 275 9,000 476 327 149 37 350 9 

25 509 434 9,000 697 398 299 75 350 5 

26 553 609 9,000 513 475 38 9 350 37 

27 466 868 9,000 504 510 - - 350 - 

28 301 169 9,000 231 208 23 6 350 61 

29 141 284 9,000 125 161 - - 350 - 

30A 203 255 24,000 749 491 258 65 450 7 

30B 1,066 591 9,000 1,142 735 408 102 350 3 

30D 795 745 9,000 1,188 642 546 136 350 3 

As seen, based on the processed data, the service has identified the actual heating and cooling hours of the 

AC systems per room, measured the electricity currently consumed for heating/cooling purposes, and 

computed the payback period of the replacement investment assuming the installation of an AC system of the 

same capacity but better energy efficiency (SEER = 8.5 and SCOP = 5.1 for a modern A+++ AC system). For 

the cost-benefit analysis, an installation cost of around 400€ was assumed and an electricity price of 0.25€ per 

kWh (after taxes). It is evident that equipment replacement is mainly encouraged in rooms of relatively high 
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occupancy where AC systems are used more frequently (i.e. for longer heating/cooling hours). 

Figure 5 provides further insights on the efficiency of each AC system, depicting the hourly electricity consumed 

on average for heating/cooling the rooms based on the outdoor temperature. Green lines represent the 

average energy consumed per hour, while the red and blue lines the average energy consumed during the 

heating and cooling period. It is evident that some systems are more efficient during the heating or cooling 

season, a factor that affects the decision of the equipment replacement based on its utilisation per case. It can 

also be observed that the three systems proposed for replacement, apart from being utilised more heavily, are 

also less energy efficient, reporting an average consumption of about 0.75kWh/h compared to the rest of the 

systems (0.5kWh/h or less). These results further justify the proposals of the service. 

 

Figure 5: Electricity consumed (average) by the AC systems in the NTUA pilot based on the outdoor 

temperature. 

Finally, as previously noted, the service can provide useful insights regarding the thermal comfort of the users 

in each room. Figure 6 visualises such results for three indicative rooms. In most cases PMV is within the 

acceptable range of [-0.5,0.5], meaning that the users of the rooms use the AC systems rationally. Specifically, 

the analysis indicated that in 80% of the occupancy hours the thermal sensation was acceptable, while in the 

remaining 20% of the cases the users were mostly cold. Given that these cases can be identified also during 

the cooling season, we can conclude that the users may sometimes cool their spaces more than required. As a 

result, behavioural changes on this aspect could result in further energy savings. 
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Figure 6: Thermal comfort in three rooms of the NTUA pilot. 

The following figures provide visual insights from the analyses conducted using the GUI developed to support 

the NTUA and IEECP pilots, which do not have a Digital Twin within the DigiBUILD framework. 

 Figure 7: This figure displays the result of an analysis focusing on the air conditioning (AC) operation, 

based on historical data from a specific room in the pilot study. It offers a detailed view of the AC's 

usage patterns and efficiency. 

 Figure 8: Here, we see an economic analysis related to the replacement of the AC unit. This analysis is 

grounded in the historical operational data of the AC, providing a cost-benefit perspective on the 

potential replacement. 

 Figure 9: This figure illustrates the evaluation of the AC unit replacement in terms of estimated indoor 

conditions.  

 Figure 10: By interacting with the GUI and selecting the 'simulate' button, users can visualise how the 

new AC unit would perform in maintaining the Predicted Mean Vote (PMV) index, a measure of thermal 

comfort. The simulation is based on the specific usage profile of the AC unit in the room under analysis. 
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Figure 7: AC usage analysis and replacement information. 

 

Figure 8: AC replacement economic analysis per AC unit. 
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Figure 9: AC performance evaluation. 

 

Figure 10: Simulation example of AC replacement and PMV affection. 

These figures and the underlying analyses exemplify the GUI’s capability to not only assess current operational 

efficiencies but also to forecast the impact of potential changes in equipment, both in economic terms and in 

improving indoor environmental quality. 

FVH pilot 

Simple reconcilers such as Bottom Up, Top Down and MinTrace have been tested and a custom one is currently 

being developed. The current average mean squared error percentage for all the time series is 2.4%, while the 

average mean absolute error is 17.3% and with the use of the custom reconciler it is expected to further 

improve. Figure 11 illustrates some indicative results, particularly focusing on the distribution of error observed 
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when applying the methodology to the FVH pilot. This visual representation provides a crucial insight into the 

accuracy and reliability of the methodology in a real-world application scenario. 



 D3.2: ‘Second wave’ of DigiBUILD AI-based data-driven services for the built environment  

 

42 

 

Figure 11: Error distribution of MAE after applying methodology to FVH pilot. 

In the following figure, Figure 12, two indicative examples of the day-ahead predictions for two of the rooms 

can be visualised to showcase the model's performance. 

 

Figure 12: Indicative one day-ahead predictions for rooms JKA5.1 and JKB6.1 of FVH pilot. 
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3.1.5 Next Steps 

During the third technology release, the steps foreseen for this service in the UCL pilot include further data 

analysis, modelling, benchmark definitions and API exposure. Based on available information, further iterations 

may also be necessary to redefine the model requirements to meet the needs of other services and the 

expectations of the pilots. In addition, the already trained algorithms could be refined to improve and ensure 

the accuracy of the models considering larger amounts of data, as the model training activities have been 

carried out based on approximately 3 months of data. Finally, new functions could be added to the API interface 

to expose relevant information not identified at this stage. 

Similarly, for the FOCCHI pilot, the data exploration, modelling and API development phases will be carried out 

for the datasets still under study (building level heating related parameters). Finally, the algorithms already 

available may also be refined when more historical data become available. In the case of IASI&SITTA, it is 

expected that new data from the monitoring infrastructure can be exploited in the coming period. 

For the FVH pilot, there will be ongoing experimenting and fine tuning with the model in order to increase the 

accuracy. Additionally, the custom reconciler requires further development and testing so that the desired 

results can be achieved. For the NTUA pilot further testing of the application will take place, and for IEECP the 

appropriate configurations must be done on the application, so that it will be able to incorporate the pilot data. 

3.2 Energy performance prediction (s3.1.2) 

3.2.1 Description of the Service 

The objective of the service is to provide predictions to monitor the energy performance of a building while 

preserving the comfort of its occupants. For this purpose, time series of energy consumption and comfort 

parameters of the building will be exploited by ML algorithms. This service will be implemented in the EDF pilot 

and it will provide results for a service of the comfort category. The s3.1.2 service will provide results through a 

graphical user interface as a stand-alone service, although model results will also be accessible through the 

REST API. In terms of architecture, the following aspects should be highlighted: 

 Model creation and training are covered by the back-end environment. Models will be stored in a 

repository and applied to obtain new calculations. These models will be accessible via REST APIs, and 

further calculations can be integrated directly into the stand-alone application. 

 The results of the models will be provided in a transparent way, requesting details of the desired models 

to collect predictions and their performance. These models will be re-trained on the most convenient 

basis (hourly to weekly horizon), and constantly fed by the corresponding Data Marts. 

 Performance metrics from trained prediction models and other specific calculations from the building 

performance calculation will be accessible via and endpoint. For the building performance calculation, 

data from IEQ sensors and electricity consumption inside the building will be considered. 

The model results will be accessed through the API and the final service will offer a visualisation tool (front 

environment). The service is being developed using the Python programming language for the ML algorithm 

training and data exploration phases. The building blocks of the foreseen architecture can be seen in Figure 16. 
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Figure 16: Overall architecture of s3.1.2 Energy performance prediction. 

3.2.2 Novelty 

Since the final approach to be adopted is still to be refined, the novelty of the service cannot be underlined at 

this stage. AI-based models will be provided to estimate energy consumption and other considerations will be 

taken to provide performance prediction, based on literature. 

3.2.3 Development Progress 

The activities during the second release of this service include the consolidation of the final list of datasets to 

be used, data exploration and analysis. In addition, the final approach to support building performance 

monitoring is still being defined. During the final release, AI-based models will be offered to predict the most 

significant features and as input for comfort services, and finally exposed via REST API to ensure seamless 

integration. 

3.2.4 Application on DigiBUILD Pilots 

This service will be implemented and validated in Pilot 2 (EDF). As agreed during this phase, the energy 

performance prediction service will be used as a stand-alone application and will provide inputs for service 

s3.3.1 Enhanced comfort and well-being through an endpoint. Integration into the digital twin is not foreseen. 

The main focus of the pilot is on the exploitation of energy and comfort information, and the key information 

to be used is related to electricity consumption parameters (i.e. heating, lighting, plugs) and indoor 

temperatures (IEQ sensors). Therefore, energy performance prediction will be connected to energy 

consumption and temperature information, as thermal comfort is a priority. Details of the implementation of 

s3.1.2 in the EDF pilot can be found in UC_28 (D1.2). 

During the second release, activities have focused on data exploration and analysis to understand the 

possibilities offered by the available information to estimate building performance. While the Ellona and Ethera 

devices (IEQ parameters) cover five different zones, the electrical information comes from three main sources. 

The correlations between spaces related to the datasets need to be established at an early stage, before 
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modelling activities can start. Furthermore, the final approach has not been consolidated, so an alpha version 

is not available at this stage, as the purpose of the service is still under analysis. 

3.2.5 Next Steps 

During the next and final release, the planned steps for the service include further data exploration, modelling, 

API consolidation and development, and GUI implementation. Although a first identification of datasets to meet 

the expectations of the service has already been done, the final deliverables and, thus, all dependent activities 

are still being redefined. The API integration will follow an approach similar to that adopted for other services, 

while the first mock-up of the interface will be provided with real functionalities and refined so as to be adapted 

to the final version of the service. 

3.3 District network production forecasting (s3.1.3) 

3.3.1 Description of the Service 

District heating network operators must ensure heat supply under all circumstances and considering economic 

and technical constraints. Heat production needs to be planned and, for this purpose, it is necessary to know 

the future demand. The main goal of the District Network production forecasting service is to provide energy 

predictions to control the energy performance of a district network and help reduce CO2 emissions by reducing 

energy consumption. 

Heating demand forecasting has been explored extensively in the literature. Some of the most critical 

challenges are related to the size of the heating network and climatic conditions of socio-economic aspects, 

among others. The approach adopted in DigiBUILD is based on the exploitation of time series data from the 

resources available in the network, as well as other relevant characteristics of the buildings under study.  

This data-driven approach provides predictions using ML-based algorithms. Specifically, the service is applied 

at two different locations, namely FASA DHN and Río Vena DHN. Based on the available information and the 

connection with other WP3/4 services (s3.2.2 District network production economic optimisation and s4.3.2 

District network Digital Twin), two different approaches are followed, considering hourly and daily prediction 

horizons. In terms of architecture, the following aspects are considered: 

Model creation and training are covered by the back-end environment. Models can be retrained according to 

the expected usage, stored in a repository and applied to new calculations. The models can be accessed via 

REST APIs. 

The new calculations are offered to users in a transparent way, so that only the details of the required models, 

such as the district network under study, the type of parameters to be predicted, the available pre-trained 

models and the forecasting horizon, in case several options are possible, need to be indicated in the API query. 

So far, only historical data in the form of files have been used for model training, while at a later stage the 

models will be fed with the corresponding Data Marts. 

Finally, the most relevant metrics of the selected models can also be obtained via the endpoint. 

The results of the service will be displayed together with the aforementioned services, although they can also 

be accessed via the API. Therefore, no visualisation tool is foreseen, while it will be integrated into the front-

end environment provided by the corresponding Digital Twin category (s4.3.2). The service is being developed 

using the Python programming language, and several libraries for the development of ML algorithms (NumPy, 
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Pandas, SciPy, Scikit-learn, etc.) are being considered for the data exploration and model training phases. The 

high-level updated architecture of the service is shown in Figure 14, while Figure 13 provides some details on 

the algorithm process.  

 

 

Figure 13: Overview of District Network Production Forecast Service (s3.1.3) approach. 

 

Figure 13: Overall architecture of s3.1.3 District network production forecast. 

3.3.2 Novelty 

The innovation offered by this service lies within the methodological approach adopted for the two district 

heating networks under study. Prediction models in this context can be either physical or data-driven. While 

for the former a detailed insight into the thermal dynamics and energy behaviour of buildings is needed, for 

the latter little information is needed. Data-driven models can efficiently find relationships, which is the 

approach selected for this service. In both pilot sites, a regression algorithm is applied to predict the energy 

demand in buildings belonging to the district heating network. This value can be aggregated at network level 

and disaggregated at more specific level of detail. In the case of Río Vena, the information from the heating 

consumption of the 23 buildings in the network is used in an aggregated way in the forecasting models (gas 
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consumption), and the results feed s3.2.2 District network production economic optimisation every hour, 

according to the specified needs.  

On the other hand, the optimisation algorithm based on Particle Swarm Optimisation applied at the second 

site, (s3.2.2 District network production economic optimisation, details in section 4.2), FASA DHN, requires a 

higher level of detail, and substation predictions are needed to obtain the total energy that must be provided 

by the generation systems to cover the buildings demand as well as the heat losses in the distribution system. 

The integration of clustering with regression has become popular due to its excellent performance in building 

energy prediction tasks, however, studies on clustering and regression models to achieve optimal 

performance are lacking (6). Among the advantages of this option, the reduced computational burden can be 

underlined. In order to reduce complexity and demonstrate its potential, a hybrid method combining building 

clustering and regression for energy prediction is applied in this context. In this way, a set of representative 

buildings is selected, and the number of models considered is smaller, thus reducing the complexity in terms 

of calculation. 

3.3.3 Development Progress 

During the first release, the effort was devoted to data exploration, to determine and detect patterns and trends 

within the datasets under study. At this point, some visualisations of the first analyses were obtained and 

included in D3.1.  

During the second release, more comprehensive analyses were carried out and new models were estimated. 

During this period, data from Río Vena DHN have been explored and pre-processed to determine and detect 

patterns and trends within the dataset under study. This work has been carried out using Python and through 

libraries such as matplotlib, or seaborn, some visualisations have been obtained. The models have been 

validated using the most common metrics, and an API has been created to access information on the 

performance of the models and the new predicted values.  

In parallel, FASA DHN development activities have continued. A two-step methodology has been defined to 

address the DHN consumption prediction problem, including classification and regression algorithms. Some 

information related to the geometrical aspects of the buildings is being collected and refined to fit the input 

format foreseen for the classification phase, while the main features for energy modelling have been identified 

from the DHN dataset. 

3.3.4 Application on DigiBUILD Pilots 

The service will be tested and validated in two demonstration sites of Pilot 4 (VEOLIA), corresponding to two 

differently configured district heating networks. Thus, a different approach has been followed for each location. 

 Pilot 4 - District Heating Network Río Vena: for this specific application, the heating energy related to 

gas consumption is predicted, although 15 variables are measured and available, as jointly defined with 

other services. This result will be used in the optimisation algorithm to reduce resource use. 

 Pilot 4 – FASA DHN: In this demonstration site, the district heating network has 20 distribution 

substations, 2 biomass boilers and 1 gas boiler, and the pilot also contains photovoltaic panels. The 

predictions will include the energy generation of the PV panels and the energy consumption per building. 

This result will be used in the optimisation algorithm to reduce and balance the use of resources and also 

reduce CO2 emissions. 

UC_13 (D1.2, D1.6) contains specific details of the implementation of s3.1.3 in the VEOLIA pilot. 
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Río VENA DHN 

During this period, the DHN data have been explored and pre-processed in order to determine and detect 

patterns and trends within the dataset under study. This work has been carried out using Python and through 

libraries such as matplotlib, or seaborn, some visualisations have been obtained.  

The historical data of this demonstration site includes 14 variables from April 2023 and 15 from August 2023 

(previously only 4 variables were available). The most interesting parameter according to the needs of s3.2.2 is 

stored from April 2023, so the final version of the model may be modified to maintain good accuracy when a 

full period is available. This model has been validated using the most common metrics, and initial versions 

include linear regression, Random Forest regression, Decision Tree regression, OLS, Support Vector Machine 

regression and ARIMA. On average, the results show R2 values of 0.97, MAE: 72.49, RMSE: 285 and MSE: 

82644.45. Finally, the model performance information and the new predicted values are accessible through the 

API. The following figure shows some of the parameters that the user must indicate to retrieve this information. 
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Figure 14: API definition. 
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Figure 15: API query results for available models in Río Vena (s3.1.3 District Network Production 

Forecast Service). 

 

 

Figure 16: API query results for new calculations using the most accurate model for energy 

consumption prediction model in Río Vena (s3.1.3). 
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FASA DHN 

During the second release for FASA DHN, work has focused on the definition of a methodology to provide 

DHN consumption predictions in an efficient way. In a preliminary phase, a first analysis of the dataset was 

carried out to identify the most relevant characteristics of the network to be considered in the modelling 

activities. Subsequently, the two steps to be performed were defined, involving, firstly, classifying the buildings 

into multiple sets according to their behaviour, and, secondly, exploring the most convenient regression 

techniques to apply in order to provide accurate predictions. 

Buildings are grouped according to similarity of construction characteristics in order to minimise the 

computational burden required to estimate the energy consumption of a large set of elements (in this particular 

case, 20 buildings). One representative element per group is selected and the results are extrapolated to the 

rest of the buildings in the district considering the corresponding heating surface. The parameters considered 

for this classification include, the orientation, the size of the building, the existence of an adjoining block, and 

the presence of shading or windows. In a second step, regression algorithms are explored to model the heating 

consumption needs at building level. Predictions will be made using hourly or daily consumption and this 

information will be exploited in the DHN optimisation service and displayed via the digital district twin. 

3.3.5 Next Steps 

For this service, different levels of development are being managed in parallel, as two different approaches are 

adopted. Thus, in the case of the Rio Vena DHN, a first preliminary version of the service is ready and fulfils the 

needs of the pilots and the requirements of other services. On the other hand, for the FASA DHN, although the 

approach is designed, it is necessary to finalise the training and improvement phases of the models for the 

different energy assets. Similarly, access to model predictions and performance metrics will be provided 

through APIs to ensure seamless integration. 

3.4 Energy forecasting (s3.1.4) 

3.4.1 Description of the Service 

Energy forecasting is essential for the smartification of buildings, as it helps optimise energy consumption, 

enhance efficiency, and improve sustainability. It enables energy managers to plan and allocate resources 

efficiently, as well as manage loads and schedule tasks and operations to ensure that energy is available when 

needed, prevent energy wastage, and maximise the use of clean energy. Moreover, it assists them in 

anticipating high-energy consumption times and manage production and demand accordingly to reduce costs 

and shave peaks. Finally, energy forecasting can minimise downtime, extend the lifespan of equipment, and 

improve grid interaction and demand response. As such, s3.1.4 can effectively serve as a basis for supporting 

data-driven solutions aiming at energy profiling, performance monitoring and benchmarking, energy resources 

management, load management, and predictive maintenance. 

Energy forecasting is distinguished into load and power generation forecasting. In load forecasting, the 

objective is to predict the energy consumed in a building (or a certain space of it, also possibly per load type) 

over a time horizon, usually from a few hours to a few days. Energy consumption is characterised by strong 

seasonal patterns, observed on a daily, weekly and annual basis, but it is also affected by calendar factors (e.g. 

holidays and special events) and, to a lesser extent, weather conditions (e.g. outdoor air temperature and 

humidity) and energy prices. In power generation forecasting the objective is to estimate the expected energy 

production which, when it comes to buildings, typically refers to PV plants. Solar power is stochastic in nature 
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and mostly driven by weather conditions. Therefore, in contrast to load forecasting, weather conditions (e.g. 

solar radiation and cloud coverage) and time of day are the most critical factors for accurately predicting power 

production. 

Based on the above, in the context of s3.1.4 development, energy forecasting models were designed according 

to the following axes: 

Time series data: Historical load and power generation data are typically provided as time series, where 

observations are collected over consecutive, constant periods of time. Time is a critical factor in analysing 

trends and seasonality and can, therefore, provide a strong basis for constructing generalised prediction 

models. 

Explanatory variables: Identifying features that influence energy demand and production can help improve 

forecast accuracy. In this respect, if available, weather (e.g. air temperature, humidity, solar radiation) and 

calendar variables are tested in terms of utility and included in the forecasting models as explanatory variables. 

In addition, past observations of the target series are considered as features to facilitate pattern recognition 

(e.g. capture seasonality) and assist the specification of the running level of the series. These features are 

engineered and selected using cross-validation techniques. 

Data pre-processing: In most of the cases, raw historical data that are collected by sensors and smart meters 

will involve missing and unusual values. Therefore, preparing and cleaning the data used for training the model 

can significantly improve data quality and, consequently, forecast accuracy. The developed service supports 

data pre-processing by handling missing values, removing outliers, scaling, and transforming variables. Note 

that data pre-processing may also involve temporal aggregation, i.e. summing/averaging time series data 

across time so that the frequency of the raw data is transformed into the desired frequency (e.g. transform 5-

min data into hourly observations). 

Model selection: The rise of ML has created a rich arsenal of forecasting models. As a result, depending on 

the application and the data available, different models may perform best. In this regard, the service conducts 

a “forecasting competition” using cross-validation to determine which model is most appropriate for producing 

forecasts for the forecasting task at hand. For the sake of brevity, the pool of models tested includes 

conventional time series models (ARIMA and Exponential Smoothing - ETS), multiple linear regression - MLR, 

and ML algorithms, such as tree-based models (Random Forest- RF - and Gradient Boosting Trees - GBT) and 

neural networks (Feed-Forward – FF - and Long Short-Term Memory -LSTM- networks). 

Hyperparameter tuning: When it comes to ML-based forecasting models, which involve a high number of 

parameters and hyperparameters controlling their training process, defining the optimal values of the latter is 

critical to enhance forecast accuracy. To that end, after selecting the most appropriate forecasting model, its 

hyperparameters are tuned. However, in order to reduce computational cost, for each model the optimisation 

search space covers a certain set of hyperparameters that are regarded as the most influential ones (e.g. 

number of trees and learning rate for Gradient Boosting Trees). 

Ensembles: It is widely accepted that combining forecasts of multiple, diverse models can help tackle model, 

parameter, and data uncertainty, thus improving overall forecast accuracy. In this regard, the service supports 

ensembles of two or more forecasting models from the pool of models defined previously. 

Note that, by default, cross-validation assumes an 80-20 split analogy of the historical data into train-test sets 

so that the results are sufficiently generalised. Moreover, given that the most recent data are more relevant for 

making new forecasts, the test set covers the last part of the series instead of being created by randomly 

selected observations. In terms of accuracy measures, the mean squared error of the forecasts is used for 

feature selection, model selection, and hyperparameter tuning, although other measures can be supported. 
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Finally, in all the evaluations performed, the forecasting horizon is set equal to the horizon to be considered 

for the actual forecasts so that simulation results closely represent reality. 

An overview of s3.1.4 development process is provided in Figure 17, while the building blocks of the foreseen 

architecture can be seen in Figure 18. 

 

Figure 17: Overview of s3.1.4 approach. 

 

Figure 18: Overall architecture of s3.1.4 Energy Forecasting. 

3.4.2 Novelty 

A significant number of forecasting methods have been developed over the years to forecast power generation 
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and load (Sarmas et al., 2022). In the field of solar power forecasting, ML regression methods like neural 

networks, decision-tree-based models, and support vector machines have been identified as the most 

appropriate ones due to their ability to effectively consider multiple factors influencing PV production and 

account for nonlinear relationships. Nevertheless, the quantitative comparison among different forecasting 

methods is challenging in practice as their accuracy depends heavily on the quality and resolution of the 

historical data available, the forecasting horizon examined, and the precision of the weather forecasts provided. 

Similar conclusions stand true for load forecasting. The literature suggests that time series methods, although 

intuitive and fast to compute, are limited in terms of adaptability and capability to model non-linear 

relationships. ML forecasting methods can effectively deal with these limitations, being also capable to 

efficiently incorporate information related with weather conditions, calendar effects, special days and events, 

and other factors that may affect demand. The most popular ML models used in the field are NNs, but 

regression-tree-based ML models, like GBT, have also become popular, showing promising results in various 

load forecasting applications, while being relatively faster to compute and easier to parameterise than NNs. 

Given these challenges, the novelty of s3.1.4 lies exactly on its ability to generate accurate load and power 

generation forecasts for buildings of different location, type, technical and behavioural characteristics, also 

supported by different sets of explanatory variables and historical data of different size and quality. By 

integrating data pre-processing, model selection, feature engineering, and hyperparameter tuning processes, 

the service is effectively generalised, allowing the production of forecasts in an automated, unsupervised 

fashion for a wide range of forecasting applications. Moreover, by introducing ensembles of models, the 

forecasts become far more robust and trustworthy, thus supporting a variety of decisions related to energy 

management. 

The developed service follows the principles of AutoML solutions that have been recently introduced to 

automate the end-to-end process of applying ML to real-world problems. As such, s3.1.4 automates the 

forecasting workflow, significantly reducing the need for manual intervention and expertise at each step of the 

process. Consequently, it makes forecasting more accessible to individuals with limited expertise, allowing 

domain experts, data analysts, and business users to leverage ML without requiring an in-depth understanding 

of the underlying algorithms. Benefits are also present in terms of efficiency and speed as the service iterates 

through multiple models and configurations, finding the best-performing solution in a fraction of the time it 

would take through manual trial and error. The service is also more scalable, allowing it to handle large datasets 

and complex forecasting problems efficiently, it can quickly adapt to changing data, and can be integrated 

easier with cloud services. Overall, the design principles and elements of s3.1.4 contribute towards the 

democratisation of energy forecasting, allowing a broader range of users to harness the power of state-of-the-

art forecasting algorithms for solving problems in various domains. 

3.4.3 Development Progress 

The activities during the first release for EMOT focused on the identification of relevant datasets, the connection 

to other services and the collection of first requirements from the point of view of other services. No significant 

development activities were reported, while this work progressed over the following months. During the second 

release, data exploration and analysis activities were carried out to understand consumer partners through 

visualisations of the available datasets, namely information on electric vehicles and charging station usage. 

Additionally, the set of requirements and connections between the results of this activity and the 

implementations of other WP3/4 services were refined. The initial models were developed considering an hourly 

forecast horizon and validated using the most common metrics, and in a subsequent step the results have been 

exposed through an API for a seamless integration. The lack of detailed information for the other datasets, such 
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as PV production and energy consumption in buildings, has delayed the related activities, which will be 

addressed in the next technology release following a similar procedure. 

In order to put the energy forecasting models in use according to the principles of the DigiBUILD architecture, 

two separate APIs are currently developed, the first being responsible for implementing the load forecasting 

model, while the second for implementing the PV production forecasting model. 

The APIs are being developed in Python using the pandas, numpy,  StringIO, and BytesIO libraries for handling 

the data and making basic numeric operations, the fastapi library for enabling efficient API calls, as well as the 

lightgbm and sklearn libraries for implementing the forecasting models and supporting their tuning and 

training process. 

Specifically, each API is tasked to retrieve the historical data required for training the model, create the 

respective time series, pre-process the data (handle missing values and outliers, apply transformations, scaling, 

and temporal aggregation), engineer features, select the most suitable forecasting model, and tune its 

hyperparameters. Once the above workflow has been complete, the trained model is stored at MLflow so that 

it can be easily accessed and used for inference using a secondary API. As a result, the forecasting models can 

be retrained either periodically (e.g. on a weekly basis) or on demand to take into account the most recent 

data and improve performance. At the same time, the inference phase of the model is sped up and simplified. 

The source code can be found on GitΗub: GitHub s3.1.4 

3.4.4 Application on DigiBUILD Pilots 

The service will be tested and validated in pilot 5a (EMOT) and pilot 6 (HERON).  

 Pilot 5a (EMOT): this pilot aims at improving energy management processes. To do so, energy 

production and consumption values are processed by ML models in order to help obtain optimal energy 

management, taking advantage of information coming from photovoltaic production, building and 

electric vehicle fleet consumption and charging station usage. These predictions will be used for 

optimisation (s3.2.3 Power recharging management) and integrated in a digital twin (s4.1.2 Digital Twin 

for optimal energy management). Details of the implementation of s3.4.1 for the EMOT pilot are described 

in UC16 (D1.2). 

 Pilot 6 (HERON): the objective of HERON is to predict the electricity consumed by EV chargers available 

at various locations, including residential and business buildings, but also the electricity provided by a PV 

plant. Thanks to this, it will be possible to cover UC_3. Moreover, through services s3.2.3, s3.2.4, and s3.2.5 

of WP3, which will be connected, UC_29, UC_26, and UC_30 will be fulfilled.  

During the second release, the available datasets in EMOT have been considered (electric vehicles and charging 

stations usage) for data exploration and analysis, identification of connection between the results of this activity 

and other WP3/4 services and the first model development. The models have been trained according to the 

most appropriate forecast horizon for the needs of other services and validated using the most common 

metrics. Different state-of-the-art ML models have been trained for the estimation of the VE SoC, such as the 

Random Forest regressor, the Gradient Boosting regressor, the Lasso regressor or the MLP, although further 

iterations and refinements might be necessary when more historical data become available. Preliminary results 

show on average results in the following range: R2 values of 0.98, MAE: 0.36 RMSE: 0.01 and MSE: 4.26. In the 

case of the charging station data, the average results show an accuracy of 0.89 for R2, ΜΑΕ: 1.701, RMSE: 2.91 

and MSE: 8.57. Finally, the model performance metrics and predictions are accessible through an API.  

Up to this point, the service has been successfully applied on one DigiBUILD pilot, HERON, where energy 

https://github.com/digibuild-technology-release/s3_1_4_NTUA
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forecasts were required both for predicting load and power generation. The service is provided as an API so 

that its results can serve as input to other services, such as s3.2.3, s3.2.4, and s3.2.5. 

HERON is interested in forecasting the electricity consumed by EV chargers installed in various locations, 

including residential and business buildings, as well as the electricity produced by a PV plant. The objective is 

to exploit such forecasts to improve overall energy management and sustainability. Specifically, the forecasts 

are primarily required on a daily basis (forecasting total consumption for the following day), but hourly 

forecasts are also relevant (forecasting total consumption for the following day, disaggregated per hour). As 

such, although the forecasting horizon is constant, the frequency of the forecasts may vary. 

Given that EV chargers data were not accompanied by any explanatory variables, in this case feature 

engineering was limited to the creation of lag and calendar variables. In contrast, PV production forecasts were 

supported by historical weather forecast data (e.g. solar irradiation) retrieved by Power Data Access Viewer. 

Following the service’s workflow, a set of time series and ML methods were evaluated and a special case of 

GBM, namely LightGBM, was identified in both cases as the most suitable model for producing day-ahead 

forecasts. 

Figure 19 presents some indicative results of the application of the load forecasting service at the HERON pilot. 

The bars summarise the forecast accuracy of the assessed models in terms of Root Mean Squared Error (RMSE), 

while the Naive model (marked in yellow) effectively serves as a benchmark since it bases its predictions solely 

on the previous week’s historical data. As seen, the time series forecasting models (marked in red) improve the 

accuracy significantly over the benchmark, but LightGBM achieves best results. The rest of the ML models 

tested (marked in blue) perform relatively worse. Some ensembles of the time series and ML models (marked 

in green) are also tested with moderate results. Based on these results, the API would store the trained 

LightGBM model at MLflow to be latter used for inference, as indicatively presented in Figure 20. Moreover, 

once the daily forecasts have been computed, hourly forecasts can be estimated using the seasonality indices 

depicted in Figure 21. As seen, reasonably enough, most EV users opt to charge their EV vehicles during night 

hours. 

https://power.larc.nasa.gov/data-access-viewer/?fbclid
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Figure 19: Forecast accuracy (RMSE) of the models tested by the service for predicting (day-ahead). 

 

Figure 20: Example of day-ahead forecasts of the LightGBM model used to predict EV load at the 

HERON pilot. 

 

Figure 21: Seasonal indices used for disaggregating daily EV load forecasts into hourly ones at the 

HERON pilot. 
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3.4.5 Next Steps 

The next steps for s3.1.4 in the HERON pilot are outlined as follows: (1) complete the development of the APIs 

used for training the forecasting models and their integration in MLflow, (2) enhance the complete forecasting 

workflow (this will be a continuous process that will be carried out throughout the implementation in order to 

further improve accuracy), (3) incorporate new monitoring devices and data to retrain the models and improve 

performance, (4) finally, complete the extension of the service for EMOT pilot and validate its performance. 

The next steps foreseen for this service in the EMOT pilot include data exploration, modelling and API 

development for access and integration of the service. The first, second and third activities are mainly planned 

for PV production and consumption at building level, as the lack of high-resolution data has delayed these 

activities. Moreover, in the upcoming months of the project, the algorithms already trained for other datasets 

available at the demonstration site, such as electric vehicle charging consumption and charging stations, can 

be refined to improve the accuracy of the model, taking advantage of the use of a larger dataset. Finally, in case 

other features are identified that need to be provided by existing endpoints, they could be adapted. 
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4 Data-driven services for energy resources 

management 
 

DigiBUILD project focusses on reducing carbon footprints and enhancing system resilience through data-

driven services, contributing to the energy sector's decarbonisation. In this context, Task 3.2 centralises on 

optimising different systems through various approaches in all the involved pilots. In s3.2.1 the main focus is 

the implementation of novel algorithms at the University College of London and IASI municipality for real-time 

building management, detecting sensor faults and consumption anomalies. District Heating Network 

Optimisation (s3.2.2) is exploited in two distinct networks (CP Rio Vena and CP Fasa), where different 

optimisation strategies are employed. Rio Vena aims at minimising gas boiler consumption for cost and 

greenhouse gas emission reduction. CP Fasa's strategy integrates multiple heat sources (PV, gas, biomass 

boilers) for a greener optimisation. In the Heron Pilot, services enable knowledge of the hourly carbon footprint 

to minimise environmental impact. Novel approaches estimate 'greenness' of hours (s3.2.3), optimise the 

electrical grid (s3.2.5) and provide real-time information (s3.2.4). The Emotion application focusses on 

maximising PV self-consumption and minimising greenhouse gases. The provided services calculate optimal 

EV charging strategies (s3.2.3), considering user preferences converted into energy requirements (s3.2.4), and 

offer real-time control of charging stations and heat pumps (s3.2.6). All these services will be detailed in the 

next sections of this chapter focussing on their description, novelty and main achievements. 

4.1 Pro-active maintenance and facility management (s3.2.1) 

The increasing availability of smart sensors and IoT devices leads to a constant availability of data, in most 

cases real-time, providing users with greater possibilities to manage and control buildings. By exploiting this 

amount of data, algorithms can be developed to monitor real-time conditions of the building and, in this way, 

optimize its management, reduce costs, and plan maintenance. This added value also has an important effect 

on reducing consumption, and therefore reducing the building's environmental impact as well. In addition to 

other innovative services, this service also allows to provide the best living experience for the occupants of the 

building by combining real-time monitoring with comfort and well-being monitoring, assessing the real-time 

condition of the occupants.    

4.1.1 Description of the Service 

In the context of DigiBUILD, this service will implement a rule-based algorithm that aims at detecting faults at 

sensor level. Different conditions are monitored, starting from various situations that could arise during the 

daily operation of the building. For instance, if a room monitored from the sensors installed in the Pilot’s 

premises register a temperature higher than a certain value, the algorithm will identify the issue and notify the 

Building Manager (BM), providing a relevant solution.  

In addition, the algorithm is being developed with the objective of being used in conjunction with the 

prediction services implemented in s.3.1.1 and s3.3.1. In this regard, the service will be useful in a twofold 

manner. In the case of the predictions provided by 3.1.1, the service will detect potential discrepancies between 

the predicted trend of a certain value and the real one and will notify the BM accordingly. On the other hand, 

the service will allow the monitoring of comfort, exploiting the comfort estimation provided by s3.3.1 and the 

data coming from the sensors. 
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Given this comprehensive input, the output of the service will be threefold:  

- An alert notification, shown on the Digital Twin Fault Detection page. The type of notification will be 

different according to the type of Digital Twin the pilot opts to utilise.   

- A report on the detected anomaly, indicating the sensor that produced the anomalous value, along with 

the associated timestamp.  

- A strategy or solution to compensate for the detected fault.  

A detailed schema of the input/output pattern of s3.2.1 is provided in Figure 22.  

 

 

Figure 22: s3.2.1 input/output schema 

4.1.2 Novelty 

The growing number of available real-time data has made the creation of real-time fault detection algorithms 

possible. Each of these, with their various particularities, allows the state of the building to be monitored and 

inspected in real-time. In this case, the lack of historical data did not allow the training of data-driven models. 

However, the availability of real-time data guided the development towards a rule-based algorithm. Examples 

of rule-based fault detection algorithms can be found in (7) and in (8) also focusing on HVAC systems AHUs. 

There are several aspects of novelty that we can identify in the presented algorithm, starting with its 

composition: the algorithm has a generalised set of rules that makes the software easily scalable. As a result, 

the algorithm can be utilised by different Pilots. Moreover, the algorithm is accompanied by a Pilot-Specific set 

of rules that allows the real-time and specialised monitoring of buildings. Those rules will focus not only on 

the ventilation system, but it will have a broader scope which also considers temperature and lighting variables. 

Moreover, the possibility of receiving a real-time notification with a solution suggested to the identified issue 

will simplify building management operations. The exploitation of the predictions provided by s3.1.1 and the 

comfort status provided by s3.3.1 will also provide added value to this service, adding the possibility of defining 

a set of innovative monitoring conditions that will take into account possible future faults and monitor the 

comfort level of the occupant and expanding the scope of the algorithm beyond the simple device monitoring.  

4.1.3 Development Progress 

The main core of the algorithm will be represented by a series of “if-then” rules, connected to the real-time 

data broker provided by the Pilot, resulting to a real-time fault detection model. At the time of writing this 

deliverable the connection with the data source is implemented using a simple Python MQTT client, that can 

connect to all the available room-related topics streamed by the Pilot. An example of such rules is reported in 
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Figure 23. 

 

Figure 23: Standard rule diagram of s3.2.1. 

At this stage of the development, only five basic and arbitrary rules have been defined to create a baseline for 

the service and provide control over the most typical fault situations. Rule 1, for instance, aims at controlling 

the functioning of the sensors: If a sensor is not providing data for a specific time interval, it will be assumed 

to be problematic in some way, and the system will notify the BM about this fault.  

A brief description of the rules initially developed is provided in Table 3. As explained, apart from a set of more 

generic rules, that can be generalised, a set of personalised rules will also be defined in a pilot-specific manner, 

to adapt the service to Pilots’ specific requirements. 

The source code can be found on GitΗub: GitHub s3.2.1 

Table 3: s3.2.1 first six defined rules  

 

4.1.4 Application on DigiBUILD Pilots 

 Pilot 1 UCL: Currently, the algorithm has been developed following the structure of the MQTT Broker that 

registers the data coming from Pool Street West building of the UCL Pilot. When fully operational, the 

service will be continuously connected to the broker, receiving values regularly. For each room, the system 

Rule Name Scope Applied to 

Rule 1 Detect if a sensor is not providing data 
for a certain time interval 

All relevant sensors 

Rule 2 Detect if a sensor provides anomalous 
data (independently of the other specific 

conditions) 

All relevant sensors 

Rule 3 Detect if a room temperature is too 
low/high   

Temperature sensors 

Rule 4 Monitor the functioning of the Lighting 
System (e.g. control if the lights are on in 

an incorrect interval of time) 

Lighting management system 

Rule 5 Detect if CO2 concentration is higher 
than a certain threshold 

CO2 monitoring sensors  

 

https://engit.sharepoint.com/sites/DigiBUILD/Documenti%20condivisi/WP3/Deliverables/D3.2/GitHub%20s3.2.1
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can monitor LMS values, CDS values, and TPS values, which respectively measure the lights (on/off values), 

the CO2 levels and the indoor temperature. Using these values, it is then possible to set a range of 

operativity within which the conditions of the rules are not triggered. For instance, if the temperature drops 

below 18.5 °C the model will identify an error. An example of this rule is depicted in Figure 24. 

 

Figure 24: Flow diagram of s3.2.1 for the UCL Pilot. 

When an anomaly is identified, the service will continue to work, but will notify the manager through a 

comprehensive report. If there are no anomalies, the model will periodically return a report on the status of 

the connection, indicating how many messages it has received so far, how many null values it has recorded, 

and the total number of anomalies. At this stage of the development, this report is generated every 60 seconds, 

but due to its exposure in the twin, this time horizon will be extended, and the connection status of the service 

will be displayed in a different way. 

 

Figure 25: Example of a warning detected by s3.2.1. 

In Figure 25, it is shown that each time a rule is triggered, the algorithm returns a complete and explicative 

response, so that the manager can act to prevent future faults. For this example, the rules have been forcibly 

triggered to achieve a fault, but clearly, they will be active in real contexts with real and representative 

thresholds. 

 IASI & SITTA: Until this point, the service has not been applied to Pilot 3. Therefore, in the following 

months, the main general rules will be extended to cover the pilot's needs. Moreover, a proper set of 

dedicated fault detection rules will be defined. Nevertheless, the operation of the service is meant to be 
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similar to Pilot 1, with the required pilot specific adaptation.  

4.1.5 Next Steps 

The following schedule is envisioned for the service: 

 A comprehensive set of conditions will be defined, starting from the pilot’s needs, and proceeding to a 

more general application of the rules. Proper communication between the developers and the Pilot leaders 

will be planned to finalise the service.  

 Application of the service to Pilot 3. 

 Connection with interdependent services. S3.2.1 takes as input results from s3.1.1 and s3.3.1. They both 

communicate through REST APIs, so proper connections need to be developed.  

 Exposure of the service in the DT. Currently, the service is neither exposed, nor exploited by any DT 

interface. In the following months, proper APIs to expose the service to the respective DTs will be 

developed.  

 

4.2 District network production economic optimisation 

(s3.2.2) 

In earlier deliverables, it has been established that District Heating Networks (DHNs) are crucial to achieve the 

decarbonisation of the energy sector. The latest networks, known as the fourth- and fifth-generation networks, 

combine different energy sources like electric heating, solar power, and heat from waste to efficiently boost 

heat production. In this context, it is important to investigate new approaches to make these networks operate 

in a greener way. The DigiBUILD project, specifically its service s3.2.2, introduces novel algorithms capable of 

improving the operation of two different DHNs. This includes one belonging to the widely used third-

generation DHN, CP Rio Vena, and another for the more advanced fourth-generation network (CP Fasa), which 

combine different heat sources (natural gas, biomass and power-to-heat). 

4.2.1 Description of the Service 

Service s3.2.2 is designed to guide efficient management of District Heating Networks (DHNs) to lower 

operational costs for the network manager, Veolia, benefiting consumers with cost reductions. Importantly, 

cutting costs in fossil-fuel-dependent networks also translates to decreased CO2 emissions. Given the declining 

gas prices, the service at CP Fasa, which utilises multiple heat sources, incorporates carbon footprint 

considerations, leading to a multi-objective optimisation approach. Distinct optimisation algorithms cater to 

the unique characteristics of CP Fasa and CP Rio Vena, as detailed in deliverable D5.3. 

For CP Rio Vena, the service acts as a decision-support tool, helping the manager choose optimal setpoint 

temperatures to reduce gas usage, costs, and emissions. It employs data-driven models, trained on the 

available data since week 17 of 2023 (details available in D5.3), to estimate gas boiler efficiency based on 

energy demand and supply temperature. These models are integrated into an NSGA-2 algorithm, using the 

pymoo library, to recommend daily optimal supply temperature setpoints, in timestep up to half hour, using 

as input the forecasted heating energy demand of the district (from service s3.1.3). 

The CP-Fasa service utilises extensive data sets, more than CP-Rio Vena one, offering diverse pathways for the 



 D3.2: ‘Second wave’ of DigiBUILD AI-based data-driven services for the built environment  

 

64 

optimisation algorithm. This service, applied to a fourth-generation DHN, extends beyond merely improving 

gas boiler efficiency. It aids the DHN operator in determining the most appropriate heat source between the 

three available ones. Initially, the service examines the relationship between Heating Degree Days and the 

demand for heating, employing linear regression analysis, but being extended to other models with higher 

accuracy. Following this, Particle Swarm Optimisation is applied to enhance the real DHN's performance, as 

simulated via the DHNx python library (WP4). This process also accounts for operational limits, such as 

maintaining a district minimum temperature of 65°C to prevent the growth of Legionella bacteria and adhering 

to the comfort temperature settings required at user substations. 

Both services will be integrated into a digital twin of the respective DHNs, empowering facility managers with 

actionable insights to smartly and effectively control the network for optimal performance. 

4.2.2 Novelty 

District Heating Networks (DHNs) are globally growing in complexity and usage, as noted in report (9) by the 

International Energy Agency (IEA), which also highlights the need to enhance their management to reduce 

environmental footprints. Currently, many DHNs rely on fossil fuels due to their dependability and cost-

effectiveness. However, there are instances, like CP Fasa, where networks are augmented with renewable 

energy sources (RES), including biomass boilers and photovoltaic-powered heat technology, to assist gas 

boilers. 

As detailed by Lund et al. in (10), researchers are exploring various methods to design or manage new-

generation DHNs effectively. Yet, these efforts often lack real-time application or remain theoretical when 

based on simulations from software like TRNSYS or Modelica. Even when validated with real-case data, these 

studies seldom explore tangible improvements on actual sites. Service s3.2.2 addresses these shortcomings in 

three ways. Firstly, it utilises actual data from pilot sites for a tailored, data-driven approach that is adaptable 

to other locations. Secondly, the implementation in CP Rio Vena serves as a blueprint for future research and 

DHN companies, presenting a straightforward method, in line with the pilot leader's operational controls, to 

enhance the main power plant's efficiency, thus reducing costs and emissions. Lastly, this innovative 

optimisation strategy will be applied in actual sites using a Digital Twin, demonstrating the real-world 

advantages of these methods. 

4.2.3 Development Progress 

In the Rio Vena DHN, the primary objective is to optimise boilers for cost reduction and enhanced heat 

production efficiency. As explained in D5.3, an initial version of this service for Rio Vena has been introduced, 

featuring preliminary ML models for boilers. These models were designed to predict gas consumption for 

Boilers 1 and 2, and efficiency for Boiler 3, based on six distinct inputs. A MLP was selected for its proven 

reliability and accuracy, a common choice in scientific research. The preliminary results, gauged by metrics like 

R2 and MAE, were promising based on the data collected. Additionally, this early version included an NSGA-2 

optimisation algorithm, which iteratively determined optimal supply temperatures and operational hours. 

Details of this early implementation can be found in D5.3. 

As this service is intended for actual deployment and integration into a functional DT, numerous discussions 

with the pilot leader were conducted to understand operational constraints and controllable variables on site. 

It was determined that boiler supply temperatures were the only modifiable parameters. Consequently, these 

temperatures, along with the DHN's energy demand, were incorporated as inputs in the ML model. 

Given the new constraints, boiler supply temperature emerged as the sole optimisation parameter. With only 
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one variable to optimise, the optimisation problem simplified to an unconstrained one. The NSGA-2 algorithm 

was chosen for its efficiency and widespread use in swiftly resolving such problems by the use of pymoo library. 

In the latest version of the algorithm, the algorithm aims at recommending boiler supply temperature setpoints 

that maximise heat production efficiency, as shown for example in Figure 26. 

The source code can be found on GitHub: GitHub s3.2.2 

 

Figure 26: Example of boilers’ setpoint suggestion exported by s3.2.2 based on optimisation results. 

Second case of the district network operation optimisation is VEOLIA FASA DHN with a similar objective than 

Río Vena in terms of reduction of cost, but, with the constraint about the prioritisation of the biomass boilers. 

It should be highlighted that the gas prices have lowered a lot in the latest months, which could derive in a 

result of the optimisation algorithm that sets the gas boiler as primarily source. Note that the VEOLIA FASA DH 

network is composed by 2 biomass boilers and a gas boiler used as support for peaks. Then, to avoid the biased 

result for the price, the carbon footprint is included as objective function.  

The concept of the service is depicted in Figure 27, where the optimisation service, which is based on Particle 

Swarm Optimisation (PSO) technique, is conceptualised. The service is interconnected with the digital twin and 

service s3.1.3. In this line, the workflow is as follows: 

1. The simulation engine (part of the digital twin development and implemented by means of the DHNx 

python library) calculates the heat and pressure losses that are part of the network due to distribution 

systems (pipes, forks…).  

2. Buildings energy demand should be summed to the losses. The result of this calculation provides the 

total energy that must be provided by the generation systems to cover both the buildings demand 

plus the heat losses in the distribution. 

3. The case of FASA contains a PV generation system, used as Power-To-Heat. Then, it is positively 

contributing to the generation (i.e., decreasing the boilers needs as it reduces the demand). Having 

said that, the input for the optimiser is the boiler needs obtained as the total demand of the district 

minus the PV contribution. 

4. Another input of the optimisation module is the user parameters, such as the comfort set-points that 

should be established in the demand side (buildings), as well as the energy prices (both gas and 

biomass). 

The source code can be found on GitHub: GitHub s3.2.2 

 

https://github.com/digibuild-technology-release/s3_2_2_ENG
https://github.com/digibuild-technology-release/s3.2.2_CARTIF
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Figure 27: Optimisation service conceptualisation for VEOLIA FASA DHN 

4.2.4 Application on DigiBUILD Pilots 

VEOLIA - [RIO VENA - ENG] Unlike FASA, RIO VENA had incomplete data storage; relevant data for this 

service were only gathered starting from week 17 of this year. Prior to this, only the DHN heating demand, 

gas consumption, and boiler operational hours were collected. This issue led to a delay in RIO VENA's 

application, and the alpha version featured a ML model tested on just a few weeks of data.  

As explained in the previous section, the algorithm's updated version is tailored to the DHN manager's 

interests and feasible interventions, aiming at maximising service utility. Discussions between ENG and 

VEOLIA revealed the practical difficulty in modulating individual boilers. In winter, Boilers 1 and 2 operate 

on alternating weekly schedules, but both are activated when demand exceeds a single boiler's capacity. 

Therefore, it was decided to modulate and incorporate the overall boiler supply temperature into the ML 

model, serving as the optimisation algorithm decision variable.  

The ML algorithm continues to rely on a multi-layer perceptron, now focusing solely on the boilers' supply 

temperature and DHN's heating demand. The ML algorithm was trained on data from weeks 17 to 50 of 

2023. The correlation matrix was examined to assess boiler efficiency, concentrating on Boilers 1 and 2 for 

winter (due to variable scheduling) and Boiler 3 for summer. Regarding the winter case, based on the 

available data, the R2 reported was 0.72 and the MAE was 0.1, while in summer the first metric reached 

0.81 and the second improved to 0.05. Some indicative results are graphically shown in Figure 28. 

 

Figure 28: ML model results of s3.2.2. on indicative time periods of October (left) and August (right) 

for the RIO VENA pilot. 

The optimisation process, now simplified, aims to determine the setpoint temperature that maximises 

boiler efficiency (with a limit of 102% based on boiler datasheets). An enhancement from the previous 
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version is the consideration of optimisation over an entire period (the subsequent day in the DT) rather 

than at a single timestep. Post-training, the optimisation algorithm excludes periods with no energy 

demand (maintaining the previous setpoint) and suggests optimal temperatures for remaining hours 

to maximise efficiency. Simulations on filtered historical data (excluding instances of over 102% 

efficiency and no energy demand) indicated potential savings of about 32 MWh of NG for Boilers 1-2 

in winter and 128 MWh in summer, an energy saving of 6.7% and 31.8%, respectively. Figure 29 visually 

presents the natural gas usage, both optimal and actual, alongside energy savings for both summer 

and winter periods. 

 

Figure 29: Optimisation results of s3.2.2 on indicative time periods of October (above) and August 

(below) for the RIO VENA pilot. 

VEOLIA - [FASA – CARTIF]: FASA DHN offers a wide set of historical data that is very helpful to analyse the 

information and provide initial optimisation criteria. In this sense, as also documented in D5.3, years 2018-2019 

have been taken as input to analyse the behaviour of the boilers. As observed in Figure 30, the consumed 

energy (boilers side) is correlated to the external temperature. When climate conditions are improving; then, 

energy demand is reduced; therefore, consumed energy is decreased, which is mostly happening in the Spring-

Summer periods (i.e., summer demand is basically Domestic Hot Water). 
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Figure 30: Consumed energy for VEOLIA FASA DHN (s3.2.2) 

To better overview the correlation, Figure 31 and Figure 32 show the consumed energy in contrast to the 

Heating Degree Days (HDD) aggregated per day of the month and month of the year, respectively. It is possible 

to observe that, even though a relationship exists, there are cases where the HDD (i.e., heating demand) 

increases, whereas the energy consumption decreases, which requires further investigation.  
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Figure 31: Consumed energy vs HDD in FASA DHN per day of month (s3.2.2) 

 

Figure 32: Consumed energy vs HDD in FASA DHN per month (s3.2.2) 

According to these values, a correlation analysis has been carried out through linear regression, as depicted in 

Figure 33. The result of this activity corresponds to equation (1). Statistically speaking, results provide p < 0.001 

and t-test 93.081, meaning that the 95% of the population has the chance to be within the confidence interval. 

Hence, independently of the scattering of the points, the linear regression shows a promising value, which 

needs to be refined (in line with the services models from T3.1). 

  𝐸𝑛𝑒𝑟𝑔𝑦  =  0.00036737𝑥𝐻𝐷𝐷 + 10.7763 (1) 
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Figure 33: Regression model for the consumed energy in FASA DHN (s3.2.2) 

Having the relationship between energy and climate conditions, it can be established the equation (2), where 

the energy linear regression is equal to the energy calculated through the use of flow and inlet/return 

temperatures. The inlet temperature set-point is around 87ºC and the constraint of minimum temperature 

should be 65ºC, thus, the influence of the “constant” inlet temperature is studied.  

 0.00036737 𝑥 𝐻𝐷𝐷 + 10.7763  = 𝐹𝑙𝑜𝑤 𝑥 𝐶𝑝 𝑥 (𝑇𝑖𝑛 − 𝑇𝑟𝑒𝑡) (2) 

Assuming a constant return temperature (to keep same losses according to the demand) of 65ºC (minimum 

value, although not rigorous, but it is the one used for the beta version), the linear dependency of the inlet 

temperature can be obtained as the Figure 34. The preliminary result demonstrates the capability to reduce 

the constant set-point, even up to 81.43ºC.  
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Figure 34: Inlet temperature dependency on HDD for VEOLIA FASA DHN (s3.2.2) 

4.2.5 Next Steps 

For RIO VENA, the subsequent version of the algorithm will explore new ML models to further enhance the 

accuracy of the model and reduce potential estimation errors. The precision of the algorithm is anticipated to 

improve as more data becomes available; at the time of this deliverable's presentation, less than a year's worth 

of data has been gathered. Furthermore, future research will delve into current best practices to examine the 

potential for incorporating analyses on how setpoint temperature adjustments impact thermal losses within 

the DHN. This aspect remains unexplored as substation data are not currently being collected in RIO VENA. 

For FASA, the preliminary beta version release looks for optimal set-point of the inlet temperature based on 

the correlation models. However, further investigation about the correlation between HDD and the consumed 

energy should be realised to minimise the errors in the model. Moreover, the beta version is focused on the 

inlet temperature, but the balance among the three boilers would extend the optimisation problem that is 

being solved within this service and will be part of the final release. 

4.3 Power recharging management (s3.2.3) 

The vehicle sector is a major source of GHG emissions, contributing to global warming and climate change. To 

reduce emissions, the EU is promoting the electrification of mobility, offering various incentives to buyers who 

substitute petrol cars with EVs. EVs have lower tailpipe emissions than conventional vehicles and can also 

reduce the dependence on fossil fuels. However, the environmental benefits of EVs depend on the sources of 

electricity used to charge them. If the electricity is generated from RES, such as solar and wind power, then EVs 

can help to decarbonise the transport sector. However, if the electricity is generated from fossil fuels, such as 

coal and natural gas, then EVs can still contribute to GHG emissions. 

Moreover, the electrification of mobility poses some challenges for the electric system, as it increases the 

demand for electricity and requires adequate infrastructure for charging. The integration of EVs with RES can 

also create some opportunities for balancing the grid, as EVs can act as flexible loads or storage devices that 

can respond to the fluctuations in supply and demand of electricity. For example, EVs can charge when there 

is excess production of RES, and discharge when there is a shortage of RES. This can help to smooth out the 
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variability and intermittency of RES and improve their integration into the electric system. 

4.3.1 Description of the Service 

In the context of DigiBUILD, Service s3.2.3, titled "Power Recharging Management," is designed to assist in the 

effective management of electric grids and micro-grids through the optimal use of EVs. Specifically, within the 

Heron Pilot application, this service will facilitate the calculation of a 'green footprint' score for a predetermined 

future hour within a day. This score will provide critical insights to both the Transmission System Operator 

(TSO) and end-users, underlining the most environmentally friendly time for EV charging, thereby aiding in 

emission reduction efforts. Concurrently, in the EMOT Pilot, this service will introduce an advanced optimisation 

algorithm for end-users. This algorithm will equip facility managers with various charging strategies for the 

available EVs, tailored to align with user preferences. 

4.3.2 Novelty 

In the rapidly evolving field of EV technology, a significant focus has been placed on developing sophisticated 

algorithms for optimizing EV charging. This surge in innovation is driven by the need to integrate EVs into the 

existing power grids efficiently while minimising environmental impacts. A notable example of this trend is (11) 

where researchers devised a model to optimise the charging schedules of BEVs. This model, tailored to account 

for the varying environmental effects of electricity generation, demonstrates that intelligent charging strategies 

can substantially lower greenhouse gas emissions. It considers factors such as the specific time and location of 

charging, thereby addressing the dynamic nature of environmental impact. Furthermore, this model also delves 

into the complexities of balancing various environmental impact categories to minimise the overall ecological 

footprint of BEVs. 

In a different approach, Bao et al. introduced a mixed fleet scheduling methodology specifically for airport 

ground service vehicles, encompassing both fuel-based and electric tractors (12). Their innovative mixed 

integer model, complemented by an enhanced adaptive large neighbourhood search algorithm, aims to 

minimise the cumulative costs associated with time, energy consumption, and emissions.  Another significant 

contribution to this field comes from Yin et al., who presented a strategy to ensure the safe and effective 

operation of electrical grids through optimal scheduling of EVs (13). Their method utilises advanced machine 

learning models, including LSTM and XGBoost, combined with the CPLEX solver to address the complexities of 

optimisation challenges.  

The highlighted research emphasises the increasing importance of ML and optimisation algorithms in 

balancing EV charging demands with the stability of electrical grids. However, there is a gap in applying these 

algorithms to also address user needs. In the context of this project, combining this service with others, like 

forecasting models and DT technology, offers a unique approach to solving EV charging issues. Specifically, in 

the EMOTION pilot, end-users are given a more active role in choosing the optimisation strategy. By inputting 

their preferences into the algorithm, it's possible to not only improve self-consumption but also cater to the 

preferences of the facility manager. This method not only makes energy use more efficient but also tailors the 

experience to better suit individual requirements. 

In the field of assessing the carbon intensity of energy used by buildings, extensive research has been 

undertaken. Notably, an econometric model for evaluating the carbon intensity of buildings was developed by 

Anshany et al. (14). Additionally, static spatial econometrics and panel co-integration models were employed 

by Dong et al. (15) to investigate the relationship between regional carbon emission intensity (CEI), urbanisation 

levels, and energy mix (EM). In DigiBUILD, it was necessary to construct an efficient method for evaluating 
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carbon intensity. This method considers not only house consumption forecasts, but also predicted values of 

the energy mix in the grid. The aim was to develop a methodology that contributes to optimisation techniques 

while providing easily understandable results to users, aiding them in informed decision-making to reduce 

their carbon footprint. A multi-criteria decision analysis approach was adopted, enabling the efficient 

evaluation of each hour of the upcoming day on a scale from 0 to 1, where 0 is the best and 1 the worst. This 

scale can be expressed both as a percentage of carbon intensity for user comprehension and incorporated as 

an indicator in objective functions for further applications, such as optimisation problems, as exemplified in 

section s3.2.5. Thus, this method allows for the generation of actionable insights from data typically available 

and often open access in most countries. It enables the provision of information about users' carbon footprints 

and the integration of these insights into broader optimisation and decision-making frameworks. The dual 

application of this method underscores its versatility and practical significance in the context of sustainable 

energy management. 

4.3.3 Development Progress 

In the development of the Emotion Pilot service, D3.1: ‘First wave’ of DigiBUILD AI-based data-driven services 

for the built environment, presented only the general service architecture. This was due to the lack of dynamic 

data from the pilot until October 23. Consequently, no progress was shown in the alpha release. However, 

post-release, the development of the algorithm commenced. Initially, after reviewing relevant literature, various 

algorithms and Python libraries were selected to enhance the service. To kickstart development, synthetic data 

were created to test these chosen algorithms. The initial strategy involved treating the State of Charge (SoC) 

of EVs as decision variables, employing Python libraries like pymoo and genetic algorithm for genetic 

optimisation. 

Early versions of the algorithm incorporated basic constraints such as energy balance, SoC limits, and user 

needs. However, numerous tests revealed that the solutions generated by these algorithms were suboptimal. 

This issue was primarily due to the decision variable matrix being largely filled with zeros, causing library genetic 

algorithms (like ES, GA, NSGA-II) to struggle in finding correct solutions, despite significant alterations to 

evolutionary parameters like crossover or mutation. Alternative optimisation algorithms available in pymoo, 

such as PSO, Nelder Mead, and Pattern Search, were also explored showing that the last achieved some 

improvement, but still failed to identify the optimal solution. 

A breakthrough was achieved using the PyGAD library for genetic algorithm and finely tuning the evolutionary 

parameters. This approach produced results closest to the real optimum. However, using SoCs as decision 

variables imposed severe limitations, as the SoC could only increase due to the pilot's grid-to-vehicle 

interaction constraint. This restriction significantly narrowed the solution search space. 

The final version of the service overcame this challenge by selecting the energy used to charge the EV as the 

decision variable. This new approach allowed the algorithm to find the optimal solution for each case efficiently. 

This success confirmed the validity of the approach and opened opportunities to include more complex 

constraints, such as the need to increase self-consumption and considerations regarding charging station plug 

power and availability. 

In the current phase of development for assessing the carbon footprint of buildings, the methodology has 

been thoroughly developed and is accessible via a specially designed API. This API facilitates the sharing and 

distribution of the methodology's outputs. For the specific task of assessing the carbon intensity of buildings, 

the algorithm was constructed using the VIKOR method. Additionally, a Prefect orchestrator, established at the 

NTUA premises, enables the scheduled execution and generation of the analysis on a daily basis. This 

scheduling is based on the predicted values for the upcoming day. To ensure the results are efficiently 



 D3.2: ‘Second wave’ of DigiBUILD AI-based data-driven services for the built environment  

 

74 

leveraged and disseminated to subsequent segments of the project, a FastAPI application has been developed. 

This application is responsible for handling requests and plays a crucial role in the secure sharing of 

information. It achieves this by integrating with the Identity Access Management framework, Keycloak, which 

is employed in DigiBUILD project. This approach ensures that the critical data regarding carbon intensity and 

footprint assessments are not only accurately processed but also securely and efficiently shared within the 

project's ecosystem, adhering to the necessary standards of data security and accessibility. 

The source code can be found on GitHub: GitHub s3.2.3 

4.3.4 Application on DigiBUILD Pilots 

Following the information available in the deliverable D3.1, since the two pilots where this service must be 

implemented are strongly different, the results and the details of each application will be clarified better in this 

section. 

 EMOTION: Figure 35 presents the updated architecture of the service s3.2.3 for the EMOT Pilot. 

 

Figure 35: S3.2.3 input/output architecture for the EMOTION pilot. 

Since the 70 kW PV plant was installed, the company has faced challenges in synchronizing EV charging 

with PV production to enhance self-consumption and reduce reliance on grid energy. This service aims 

to exploit various strategies for effectively charging 10 EVs in the Emotion Pilot fleet. It involves the 

forecasts of the next day's PV and building energy consumption, estimating the grid energy purchase 

(𝐸𝑏𝑢𝑦) and potential energy sales (𝐸𝑠𝑒𝑙𝑙). The decisional variable is the energy demanded for charging 

vehicle j in hour i (𝐸𝑖,𝑗). The optimisation algorithm's constraints will be refined once real-time vehicle 

data and user energy requirements (from s3.2.4) are available. These constraints will consider each EV's 

SoC, defining the maximum energy capacity per vehicle. Additionally, SoC and user preferences will 

guide decisions on which vehicle to charge and when (3), while also factoring in each vehicle's battery 

capacity (𝐶𝑗) and the charging station's operational limits set for 11 kW for each plug for a total of 44 

kW (4) considering a limit of two plugs for the available two stations (5). 

For each vehicle j: 

 

∑ 𝐸𝑖,𝑗 ≥ 𝐶𝑗 ∗ (𝑆𝑜𝐶1,𝑗 − 𝑆𝑜𝐶𝑑𝑒𝑠𝑖𝑟𝑒𝑑)

ℎ𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑖=1

 (3) 

https://github.com/digibuild-technology-release/s3_2_3_ENG
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Regarding the operational limitations, for each hour i: 

 
∑ 𝐸𝑖,𝑗 < 44

10

𝑗=1

 (4) 

 𝐶𝑜𝑢𝑛𝑡. 𝑖𝑓 (𝐸𝑖,𝑗 < 0) < 4 (5) 

Each strategy output of the service focuses on different objectives, such as maximizing self-

consumption or ensuring at least 75% usage of potential exported energy (𝑃𝑒𝑟𝑐𝑃𝑉). The strategy 

differentiation is exploited by modifying the self-consumption constraint in the problem (6). 

 

∑ (  ∑ 𝐸𝑖,𝑗 −

10

𝑗=1

𝐸𝑠𝑒𝑙𝑙,𝑖) 

24

𝑖=1

> (100 − 𝑃𝑒𝑟𝑐𝑃𝑉) (6) 

Although equation (6) presents an inequality constraint, the objective function in equation (7) focuses 

on minimizing energy costs. Consequently, the decision variables are steered towards equilibrating the 

energy exported and minimizing charging during periods when PV production is unavailable, as 

follows: 

 

𝐹(𝑋) = 𝑚𝑖𝑛 [∑ ( ∑ 𝐸𝑖,𝑗 +

10

𝑗=1

𝐸𝑏𝑢𝑦 − 𝐸𝑠𝑒𝑙𝑙) ∙ 𝐸𝑐𝑜𝑠𝑡

24

𝑖=1

] (7) 

where 𝐸𝑐𝑜𝑠𝑡 is the cost of electric energy which differs if the energy is sold or bought, calculated based 

on mean cost associated to kWh using available pilot information. 

Nevertheless, all strategies share a common goal: minimizing energy costs. A genetic algorithm will be 

employed to suggest future energy requirements for EV charging, including SoC details. It will also 

provide key strategy outcomes, such as energy cost savings, free EV charging benefits, PV energy usage 

percentage, and CO2 emissions from electricity consumption. 

During the 11-day test period from 06/12/23 to 16/12/23, the algorithm was applied to historical data 

to assess its efficiency in saving energy for EV charging. This period, falling in winter, did not always 

have excess PV production, resulting in days where the algorithm recommended not charging the EVs. 

User preferences were excluded to simplify the testing process since more than one day is considered 

in the simulation. The algorithm suggested strategies to charge EVs with the available PV-generated 

energy, as illustrated in Figure 36. Here, the red line represents imported energy, the blue line potential 

energy export, and the green line the energy used for EV charging. The results confirm that the 

algorithm effectively guided users to charge EVs using their self-generated power each day.  
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Figure 36: Power trends for charging EVs, as well as power import and export, as computed by s3.2.3 

for the EMOTION pilot. 

When examining costs over the 11-day testing period, it was observed that costs with optimisation 

were 1.7% higher compared to scenarios without optimisation, based on the average electricity buying 

and selling rates in Italy. However, this cost analysis does not include the energy used for EV charging. 

If we consider also this energy, following optimal strategy, the savings increase to 3.5%. Note also that 

during the test period, solar radiation was at its lowest. Therefore, there is potential for greater cost 

savings in future periods with higher solar radiation. 

Figure 37 serves as an illustrative example of the dynamic data from a single operational day, 

showcasing a scenario with overproduction. On this particular day, there is a user requirement to 

charge Vehicle 4 to 50% by 14:00 and Vehicle 6 to 40% by 18:00. The graph displays the way the 

vehicles are fully charged during times when there could be potential energy export, optimizing self-

consumption. Additionally, the vehicles are not only charged to the required SoC levels, but also 

beyond, as available energy permits. Consequently, the final SoC for EV4 reaches 66%, exceeding the 

initial target.  

 

Figure 37: Power trends and SoCs computed by s3.2.3 on 15/12/23 considering EV user preferences, as 

computed by s3.2.3 for the EMOTION pilot. 

When the available export capacity is insufficient to fully meet the EV charging requirements, as 

specified by the user, the algorithm proposes a strategy where a portion of the energy needed for 

charging EVs is sourced during periods of excess PV production, as shown in Figure 38. As expected, 

in this case only the minimum SoC requirement is satisfied.  
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Figure 38: Power trends and SoCs on 14/12/23 considering EV user preferences, as computed by s3.2.3 

for the EMOTION pilot. 

 HERON: In the implementation of the methodology within the HERON pilot for assessing the carbon 

intensity of buildings, it was essential to gather data from the TSO. In Greece, where the pilot is based, 

the TSO openly provides this data through an API. The data set includes forecasts of grid consumption, 

grid losses, and contributions from renewable sources (e.g. PV, Wind, Hydro) for each half-hour of the 

next day. This data set is then amalgamated with predicted building consumption values, generated 

by section s3.1.4, for each hour of the following day. 

The process of determining the weights for the multi-criteria analysis involved collaboration with 

energy experts in the pilot. Utilizing the Analytical Hierarchy Process, the bivariate significance 

relationships of the criteria were first established (as shown in Table 4), followed by the generation of 

the weights (depicted in Table 5). These weights are subsequently input into the VIKOR method, which 

is applied to evaluate the carbon intensity for each hour of the next day. The organisation and 

scheduling of this entire process are facilitated by the Prefect orchestrator, which provides an efficient 

and user-friendly environment for orchestration and task execution. Consequently, the results are 

generated daily for each building and stored in a PostgreSQL database, set up within the task to meet 

storage requirements. 

Table 4: The Analytical Hierarchy Process table presenting the bilateral significance relationships between the 
criteria considered by s3.2.3 for the HERON pilot. 

 RES 

Production 

Hydro 

Production 

Grid 

Load 

Building 

Consumption 

Building 

tariff 

System 

Losses 

RES 
Production 

1 4 1 1/9 6 1 

Hydro 
Production 

1/4 1 1/7 1/9 1/5 1/7 

Grid Load 1 7 1 1/9 2 1 

Building 
Consumption 

9 9 9 1 3 9 

Building 
tariff 

1/6 5 1/2 1/3 1 1/2 

System 
Losses 

1 7 1 1/9 2 1 
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Table 5: Weights calculated via the Analytical Hierarchy Process method of s3.2.3 for the HERON pilot. 

RES 
Production 

Hydro 
Production 

Grid Load 
Building 

Consumption 
Building 

tariff 
System Losses 

0.1318 0.0233 0.1007 0.5718 0.0718 0.1007 

To expose the results of this methodology, a FastAPI application is employed. This enables 

stakeholders, particularly the DT developers, to receive the methodology's results easily, efficiently, 

and securely for presentation within the pilot's DT. An example of such a request's outcome is 

illustrated in Figure 39. Through the API, the DT developer is offered two options: to receive results for 

all buildings in the pilot or to obtain data for each building individually by providing the building’s 

identifier, as defined in DigiBUILD. The output data includes the date (key: 'date') in YYYY-MM-DD 

format and the payload (key: 'payload'), which contains a list of objects where each object pertains to 

a separate building. Within the payload, data for each hour of the day include the carbon intensity 

classification (key: 'co2_class') with classes “Low”, “Moderate”, and “High”, the hour identifier (key: 

'index'), the ranking of each hour in terms of carbon intensity compared to other hours (key: 'rank'), 

the inverted rate generated by the methodology (key: 'inverted rate'), the score for each hour in terms 

of carbon intensity (key: 'rate'), where 0 is best and 1 is worst, and the reference time in HH:MM format 

(key: 'time'). 

 

Figure 39: API s3.2.3 response example for the HERON pilot. 

Furthermore, Figure 40 displays the API output for a building in a bar chart format. The value of the 

bars corresponds to the rate achieved by each hour based on the predicted values. Bars are color-

coded to reflect their carbon intensity class: “High” in red, “Moderate” in orange, and “Low” in green. 

This visual representation allows users to easily discern the most favourable times of the day for energy 

usage, thereby facilitating informed adjustments to their energy consumption patterns. 
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Figure 40: Hourly CO2 emission rates of building 263, as computed by s3.2.3 for the HERON pilot. The 

graph illustrates a comparative analysis across time intervals that highlight the environmental impact 

using CO2 classifications. 

4.3.5 Next Steps 

In the forthcoming months of the project, the algorithm is set to undergo refinements for heightened accuracy, 

leveraging new data collected from the pilots. Currently, the algorithm is based only on data from October ‘23, 

but it would benefit from being tested using a more extensive dataset. Furthermore, as the project progresses, 

there might be changes to the script and algorithms, particularly in their transformation into an API for seamless 

integration with the DT developed in WP4. 

In terms of the EMOTION application, the algorithm will be enhanced to include more precise estimates of 

charging efficiency. This is particularly crucial as the current data on EVs and charging stations are not 

synchronised, a status that was evidenced by the varying and mismatched timestamps in the historical data of 

the vehicles and charging stations. 

The application for the HERON pilot has been successfully developed and fully integrated into the pilot's DT 

for its buildings. An additional feature currently under consideration is the integration of a new methodology 

capable of analysing historical data from the previous month. This feature would provide valuable insights into 

past carbon intensity patterns, enhancing the depth and utility of the analysis. A crucial aspect still in 

development is the establishment of a connection to the semantic ontology of the pilot. This connection is 

essential for dynamically obtaining building meta-information. The integration of this functionality is not only 

pivotal for the comprehensive operation of the pilot but also opens avenues for scalable extension. It enables 

the possibility for the application to be dynamically reused by multiple pilots, significantly broadening the 

scope and applicability of the service. Once completed, this enhancement will allow for a more holistic and 

adaptable approach to building energy management, aligning with the evolving needs of various pilot projects. 

It underscores the commitment to continuous improvement and adaptation in the face of changing 

requirements and new opportunities in sustainable building management. 
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4.4 Energy vs e-mobility package (s3.2.4) 

4.4.1 Description of the Service 

Electric cars are becoming more and more widespread, and their increasing availability is inextricably linked to 

the possibility of analysing the growing amount of data produced by these vehicles. In this context, this service 

developed in the DigiBUILD ecosystem is aimed at understanding how to properly estimate EV consumption 

by starting from analysing different styles of driving through clustering algorithms, with the objective to build 

a more reliable consumption estimation algorithm that can support s3.2.3 optimisation.   

4.4.2 Novelty 

As the EU Green Deal and UN sustainability goals prioritise decarbonisation, it is crucial to focus on reducing 

emissions in the vehicle sector. According to the (16) report, the vehicle sector contributes over 15% to global 

emissions, and the spread of EVs is vital for reducing GHG emissions. This expansion necessitates dual-sided 

scientific research; on the first hand to lower emissions during EV charging, and on another to investigate EVs' 

actual consumption. In the study (17), the authors presented a method for predicting the remaining driving 

range using XGBoost and LightGBM algorithms based on extensive EV database named NDANEV (18). 

Although they attained high accuracy, the models included numerous features (e.g. braking ratio, acceleration 

ratio, motor, and battery output energy) which complicate their replication in simpler scenarios. Alternatively, 

H.A. Yavasoglu et al. in (19) introduced a range estimation method for EVs using collected data and 

experiments. They utilised a Decision Tree algorithm to determine road type and a neural network to predict 

the range based on factors like HVAC usage, vehicle weight, traffic, and road type, achieving over 94% accuracy. 

While these models are effective and well-crafted, their complexity limits their replication by non-experts and 

those with less sophisticated equipment.  

To overcome these limitations, in the case of the EMOTION pilot, the algorithm was trained using up to two 

years of EV data to estimate the electric consumption per km travelled. The pilot involves ten EVs, although 

data from only seven are available. This results in custom and more precise data collection that reflect the 

actual usage by drivers. A clustering technique, currently K-means, one of the most commonly used methods, 

is employed to identify clusters based on vehicle speed, which is the sole feature used to estimate consumption. 

This approach simplifies the model, enhancing its replicability and user-friendliness, even for those without 

expert knowledge and detailed data. Currently, this parameter can be set by the user as an expected average 

vehicle speed for future travels, but there is potential for it to be automatically determined in the future. 

In the HERON pilot case, a comparatively simpler yet notably effective approach for the user is employed. There 

is a notable absence of applications capable of providing real-time feedback to users regarding their load 

usage and carbon footprint. For instance, while applications like Electricity Maps (20) visually represent the 

carbon intensity for each European Union country, they fail to simultaneously inform the user about their 

specific load usage. Furthermore, these reports are typically issued daily. Contrastingly, the DigiBUILD 

methodology analyses the Transmission System Operator (TSO) predictive data hourly, as per section 3.2.3, 

and furnishes the user with real-time feedback. 

4.4.3 Development Progress 

Regarding the development that covered the EMOTION pilot, the first step was to analyse the consumption of 

the EVs by constructing a simple neural network, specifically a MLP that receives input data from the EVs (e.g., 

odometer, consumption, km travelled, speed). After analysing the different types of data, through an analysis 
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reported in D3.1: “First wave of DigiBUILD AI-based data-driven services for the built environment”, an MLP 

Regressor was constructed with the aim of estimating energy consumption. The pilot specific results were 

reported in D5.3: “Pilots’ execution documentation – Pre-pilot phase”. After this, to enhance the performance 

of the model, clustering algorithms were considered to identify consumption classes based on the estimation 

of the type of drive. In a first attempt, the covered distance was considered, trying to classify based on distance, 

with the objective to identify longer/shorter journeys and the respective consumption. 

In a most evolved stage of the development, it was decided to continue employing k-means as the clustering 

algorithm while examining the interplay between various available data. A notable pattern was observed in the 

clustering of consumption based on vehicle speed, leading to the selection of this factor to influence vehicle 

consumption predictions. As mentioned earlier, this parameter can be readily estimated based on typical travel 

speeds or road speed limits, though users also have the option to set it. For the sake of simplicity in this initial 

phase, it was treated as a constant. 

Additionally, data on electricity costs were sourced from records of charging stations spanning 2020 to 2022. 

Invoice details were also factored in to determine an average electricity cost, which will be incorporated into 

the service for more accurate cost estimations. 

The source code can be found on GitHub: GitHub s3.2.4 

4.4.4 Application on DigiBUILD Pilots 

Similar to service s3.2.3, this service will be deployed in two pilots: HERON and EMOTION. For the HERON pilot, 

the service will enable end-users to understand the carbon footprint associated with their real-time charging 

activities. Meanwhile, in the EMOTION pilot the service is designed to estimate EV consumption, aiding in 

determining the energy required for traveling specific distances. Notably, this service will play a crucial role in 

the optimisation process of s3.2.3 by incorporating user preferences. For the EMOTION pilot, this service will 

not be exposed in the DT, but will act as a component providing information for s3.2.3. 

EMOTION: Historical data of EVs provided by the pilot include information between 2018 and 2020 about 7 

EVs. In particular, until January 2020 the data does not comprehend information about vehicle location (latitude 

and longitude) which is available in the 2020 data. To consider this information about vehicle positions, first it 

was decided to investigate the possibility of using clustering techniques in the latest data. As explained in data 

analysis of D3.1, the distance travelled was calculated as difference in the odometer measurement, which has 

a sensitivity of 1 km, thus not being particularly accurate. The same stands for the energy consumed, which is 

calculated as the difference in SoC, multiplied by the capacity of each EV and adjusted based on the time of 

the interval, which is calculated as difference of two consecutive measurement timestamp. Different criteria 

were chosen to filter data and consider only relevant measurement, such as taking into consideration only 

velocities comprised between 2 km/h and the speed limit of each vehicle or considering only negative 

consumption (to avoid considering the period where vehicle was connected to the charging station).  

At a latter stage it was investigated the possibility of clustering based on available measurements, speed, 

consumption, or autonomy variation. However, most of the clustering results were not particularly useful. For 

instance, studying the relationship between consumption, latitude, longitude, and velocity it emerged that the 

main clustering reason was the vehicle velocity, as can be seen in Figure 41 which considers the relation 

between consumption and speed of a Nissan Zoe. 

https://github.com/digibuild-technology-release/s3_2_4_ENG
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Figure 41: Analysis of different clustering methods 

Three different types of clustering algorithms were investigated but only the K-means and the Agglomerative 

clustering led to promising results since the Spectral Clustering individuate 6 different clusters and just one 

cluster comprehended the 90% of all measurements.  

Figure 42 showcases the difficulties present in differentiating clusters for latitude and longitude using the K-

means algorithm, rendering the consideration of these two variables for the first evaluation useless.  

 

Figure 42: Analysis of different clustering methods considering latitude and longitude information 

For this reason, it was decided to consider only velocity to estimate the vehicle consumption since the velocity 

is a parameter that can be easily calculated given a certain itinerary or set manually by the user.  Eliminating 

the need for latitude and longitude data, allowed the inclusion of data from 2018 to January 2020. Vehicle #4 

provided the most collected data set, yielding 1372 entries post-filtering. Utilizing this data, k-means clustering 

was selected, and the elbow method was employed to determine the optimal cluster count. 

Figure 43 illustrates the elbow method's outcome, including a test with four clusters. To assess the clustering 

quality, the Silhouette Score (SS) and Davies-Bouldin Index (DBI) were utilised, as they are commonly applied 

in evaluating unsupervised clustering performance. The findings indicated that with four clusters, an SS of 0.75 

and a DBI of 0.4 were achieved, signifying a strong and suitable cluster arrangement. 
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Figure 43: Elbow method application and k-means result considering only 4 clusters 

 

4.4.5 Next Steps 

For this service, regarding pilot 5a the following plan is envisioned: 

• Refine the clustering method and consequently apply the new findings to the Neural Network model, 

to enhance consumption estimation.  

• Since 1372 values are not enough to develop strong models, the improved algorithm must be tested 

also on new EV data being collected by the pilot. 

• Find new algorithms to improve the accuracy of the models presented. 

4.5 Carbon-Free Buildings (s3.2.5) 

Minimizing the utilisation of carbon-intensive energy sources remains a paramount objective for the EU, as 

delineated in the European Green Deal initiative (21). This initiative predominantly aims at achieving carbon 

neutrality and substantially reducing the carbon footprint associated with energy consumption. In this context, 

the Carbon-Free Buildings service plays a pivotal role by employing advanced optimisation methodologies to 

significantly decrease the carbon footprint of entire buildings. This service uniquely addresses both the 

individual building occupant and the collective user group within an energy community, herein referred to as 

the 'building cluster'. It aims to refine the energy consumption profile of individual users while concurrently 

diminishing the overall carbon footprint at the cluster level. This dual approach not only promotes sustainable 

energy use within individual buildings, but also fosters a more environmentally conscious energy community, 

aligning with broader European sustainability goals. 

4.5.1 Description of the Service 

The Carbon-Free Buildings service is dedicated to reducing the carbon intensity of energy consumed by a 

building cluster through the utilisation of diverse input data. A 'building cluster' refers to a group of buildings 

selected for the application of this methodology. The cornerstone of this approach is the accurate schedule of 

flexible loads within these buildings, thereby facilitating a reduction in their carbon footprint. 

The assessment of energy consumption is twofold. First, it involves evaluating the potential energy production 

within the cluster. This evaluation considers both on-site RES, such as rooftop PV systems, and off-site sources, 
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like PV or wind farms, which are virtually mapped to the building cluster. Second, the service assesses energy 

drawn from the grid, employing a methodology outlined in service s3.2.3 (4.3). This assessment leverages data 

from the TSO and predictions about the energy mix expected to be present in the grid at any given time. 

Subsequently, based on the previously mentioned assessments, as well as predicted demand values of flexible 

loads and the total predicted energy consumption of each building in the cluster, an optimised schedule for 

the use of these flexible loads is generated. This schedule is specifically tailored to the user-defined parameters. 

In the ensuing sections, we delve into the methodology and framework setup that underpin the utilisation and 

presentation of the results in the corresponding DT. 

 

Figure 44: Overview of s3.2.5 architecture. 

Figure 44Figure  delineates the architecture and information flow across the main modules of the developed 

service. Data collection is conducted via three primary sources: 1) Metadata acquisition from DigiBUILD's graph 

database, 2) Forecasting generation and consumption data from section 3.1.4, and 3) Evaluations of the grid's 

energy mix, as per section 3.2.3. These data undergo a pre-processing pipeline to ensure their compatibility 

with the optimisation module. Post-optimisation, the data are stored in an intermediate database. To facilitate 

data retrieval by the DT, a FastAPI application, fully integrated with DigiBUILD’s Keycloak security framework, 

has been structured. This ensures that the results can be securely shared with the respective DT. 

The forthcoming section delves into the specific purposes and workflow of each module. 

Input Module 

The Input Module is the foundational component of the service, tasked with aggregating all necessary data for 

running the algorithm. The data collection process initiates with GraphQL queries targeting the semantic data 

of the building cluster. The primary objective here is to delineate the buildings comprising the cluster, along 

with identifying the building elements and their upgradeable sources. This step is critical as it enables 

subsequent requests to be issued to requisite services for data re-collection. These services include: 

• s3.1.4: This service provides vital energy predictions in three categories: the hourly day-ahead 

predicted electricity generation from the cluster's renewable energy sources, the day-ahead predicted 

hourly consumption of the cluster's buildings, and the predicted total daily energy demand of the 

cluster's flexible loads. 

• s3.2.3: It offers data on the carbon intensity of each individual building and the overall cluster. 

Post-collection, the data undergoes a process of structuring into necessary data formats, making it suitable for 
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input into the optimisation framework. 

Optimisation Framework Module 

This module is crucial for determining the optimal use of the flexible loads within the clusters, aiming to 

diminish the overall carbon intensity. Several optimisation algorithms were initially explored to address this 

challenge, including the genetic algorithm, NSGA II, and particle swarm optimisation. Due to the high 

requirements of these algorithms in terms of processing power and runtime, a strategic decision was made to 

develop an optimised version of the particle swarm optimisation algorithm. This custom algorithm 

demonstrates a notable reduction in runtime, by up to 30%, compared to standard models. It achieves this 

efficiency by minimizing the extensive migration of potential solutions, thereby converging on the optimal 

solution more swiftly. 

For the specific problem at hand, we formulated an optimisation problem that leverages the collected data to 

derive the optimal solution, defined as follows: 

 
𝐹(𝑋) =  min[∑ ∑ ((𝐶𝑗,𝑖 + 𝑥𝑗,𝑖) ∗ (1 + 𝑎𝑟𝑗,𝑖) +  𝑝𝑗,𝑖)

𝑛

𝑖=0

∗ (1 +  𝑏𝑅𝑗) + 𝑃𝑗

23

𝑗=0

] (8) 

Where: 

xj,i: The decision variable, denoting the proposed energy consumption from the flexible load of building 

i at hour j of the following day. 

Cj,i: The total predicted consumption of building i at hour j of the following day. 

rj,i: The predicted carbon intensity rate of building i at hour j. 

pj,i: The projected on-site renewable energy production of building i at hour j. 

Rj: The predicted carbon intensity rate of the entire building cluster at hour j. 

Pj: The predicted off-site renewable energy production at hour j. 

a, b: Sensitivity adjustment parameters. They belong to the interval [0, 1] and are used to modulate the 

impact of the carbon intensity rates (rj,i and Rj) on the overall calculation. 

This equation (8) aims to minimise the function F(X) which represents the total carbon intensity across all 

buildings in the cluster for each hour of the next day. The decision variables xj,i are optimised to achieve the 

lowest possible carbon footprint, taking into account the building's energy consumption, on-site and off-site 

renewable energy production, and the carbon intensity rates of both the individual buildings and the entire 

cluster. 

With the optimisation framework in place, we generate the decision variables xj,i for each building i at each 

time j. This results in the optimal recommended energy usage for each flexible load i, tailored to minimise the 

overall carbon footprint of the building cluster. 

Output Module 

The Output Module plays a crucial role in the architecture of our service. Its primary responsibility is to 

efficiently collect the output data from the optimisation framework module. This data, combined with relevant 

preprocessed information, is then stored in an intermediate PostgreSQL database. The rationale behind this 

approach is to generate the energy usage schedule on a daily basis, store it, and then make it accessible upon 

request via the API module. To manage and schedule these processes effectively, we employ a Prefect 

orchestrator. This tool is instrumental in providing a comprehensive overview of the scheduled tasks and 
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ensuring an efficient and user-friendly interface for both developers and users. Its implementation not only 

streamlines the workflow but also enhances the overall reliability and accessibility of the service. 

API Module 

This module fulfils two primary functions. First, it guarantees the secure sharing of the service's output data, 

achieved through integration with DigiBUILD's Keycloak security framework. Second, it efficiently serves and 

disseminates the output of section 3.2.5 to stakeholders in a scalable manner, catering specifically to the DTs 

in the case of DigiBUILD. 

4.5.2 Novelty 

Load scheduling techniques, such as load shifting and valley filling, along with the utilisation of population and 

genetic algorithms, have been extensively explored in prior research. Nevertheless, the methodology adopted 

within the DigiBUILD framework exhibits distinct characteristics, rendering it innovative. Initially, we define the 

term 'building cluster', a concept that encompasses a variety of buildings, their respective flexible loads, and 

both on-site and off-site RES. Moreover, while there have been intermittent efforts to integrate energy mix 

data into building-level energy resource management, DigiBUILD's approach uniquely incorporates a novel 

method for evaluating the carbon intensity of consumed energy, as delineated in section s3.2.3. This innovation 

marks the first instance of an optimisation method that employs multi-criteria analysis for the management of 

flexible loads in buildings. Furthermore, the development of an optimised algorithm, tailored to the specific 

problem at hand, not only enhances the robustness of our approach but also maximises computational 

efficiency. Coupled with an API setup that ensures secure information sharing, this service emerges as an 

innovative asset in the arsenal of facility managers. It significantly aids in informed decision-making for energy 

management and plays a pivotal role in the reduction of the carbon footprint of facilities. 

4.5.3 Development Progress 

At this juncture, all modules of the service have been meticulously developed, with the notable exception of 

integrating metadata through GraphQL queries. Currently, this aspect is provisionally addressed through the 

use of static information stored locally. The forthcoming incorporation of dynamic metadata querying will 

significantly enhance the service’s versatility, enabling rapid deployment to any interested stakeholder. While 

all other modules have been successfully developed to completion, they are currently undergoing a rigorous 

testing phase. This is to ensure their flawless functionality and to iron out any potential operational issues. The 

completion of this testing phase is pivotal to the service’s overall efficacy and readiness for practical application. 

The source code can be found on GitHub: GitHub s3.2.5 

4.5.4 Application on DigiBUILD Pilots 

Currently, the service has been applied to the HERON pilot, which encompasses five buildings. In this context, 

the 'building cluster' is defined as the aggregate of these five buildings, each quantified in terms of total energy 

consumption. Additionally, the pilot includes an off-site photovoltaic (PV) installation, which is utilised for 

virtual mapping to supply renewable energy to the building cluster. A notable feature of each building within 

the pilot is the presence of an electric vehicle (EV) charger. EV chargers, considered significant loads, are integral 

to the pilot's strategy for minimizing the carbon footprint of the cluster. Observations of the operating patterns 

of these chargers indicate a randomised usage, primarily driven by the energy needs of the users. 

Consequently, the tool developed herein is designed to assist users in making informed decisions regarding 

the charging of their electric vehicles, ultimately aiming to reduce the cluster’s carbon intensity. For the purpose 

https://github.com/digibuild-technology-release/s3_2_5_NTUA
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of service testing, two buildings, each equipped with an 11 kW EV charger, were selected. These buildings are 

also incorporated into the methodologies outlined in sections s3.1.4 and s3.2.3, allowing access to predicted 

data on their consumption, PV output, and carbon intensity. Application of the service to these buildings 

demonstrated that the algorithm effectively manages to align charging times with periods of increased energy 

production, where available. Additionally, when the PV production does not fully meet the cluster's energy 

needs, the algorithm opts to draw power from the grid during times of lower carbon intensity. Figure  illustrates 

a sample response from the API call. To access some of the API functionalities, users must provide a bearer 

token received upon signing in to DigiBUILD's Identity Access Management. This token is verified by the API, 

which then returns the requested data to users with the appropriate permissions. The developed API allows for 

the retrieval of data both at the overall building level and for specific buildings, given the building_id as a 

parameter (schema). In the output, users receive information such as the date to which the time program refers 

(key: 'date'), along with details for each building. These include the building id, the predicted daily energy 

requirement from the EV charger (key: 'predictedEnergy'), and the charging schedule (key: 'plan'). The 'plan' 

specifically outlines the index of the reference time (key: 'index'), ranging from 0 to 23, the reference time in 

'HH-MM' format (key: 'hour'), the carbon intensity class of the building's energy (key: 'co2_class'), the proposed 

usage energy from the charger in kW (key: 'energy'), and the percentage of charger usage based on the 

charger's rated power (key: 'percUsage'). 

Figure 46 presents an illustrative example of the API's output on a day when the predicted energy requirement 

for charging was notably high, specifically at 33kWh. The displayed bar chart in the figure graphically represents 

the service's recommended usage of the charger, quantified in terms of energy in kWh. From the visualisation, 

we can discern the algorithm's strategic preference for scheduling charger usage. This is particularly evident in 

the barplot, which aligns with periods of increased energy production. Moreover, the chart highlights that the 

energy class utilised during these periods is of a low carbon intensity. This aspect is crucial, as it reflects the 

service's effectiveness, not only in optimising energy usage, but also in ensuring that this usage aligns with 

environmentally sustainable practices. The bar chart thus serves as a clear demonstration of how the service 

can manage and optimise energy consumption in real-world scenarios, catering to high-demand situations 

while maintaining a focus on reducing the carbon footprint. 
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Figure 45: Carbon-free buildings API response example. 

 

 

Figure 46: Example of the recommended energy usage for building with id 263, as computed by 

s3.2.5. 

4.5.5 Next Steps 

As the subsequent phases of development progress, our primary focus will be on the extensive testing of the 

service. This testing phase is pivotal for the optimal calibration of the optimisation method, ensuring that it 

operates with the highest level of efficiency and accuracy. Following this rigorous testing, the implementation 

of the service across all the buildings within the cluster follows. Currently, the two buildings that have been the 

subject of our initial tests are already integrated within the DT of the pilot project. The next significant step 

involves the full integration of the service with the complete building cluster in the DT. This integration will not 
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only expand the scope of our service but also enhance its operational relevance and effectiveness. Throughout 

this development process, actively seeking and incorporation of feedback from stakeholders is mandatory. This 

collaborative approach is fundamental to refining the service, as it allows us to understand the practical needs 

and challenges faced by users. Stakeholder feedback will provide invaluable insights into fine-tuning the service 

to better meet the requirements of facility managers and other end-users. In summary, these next steps 

represent a crucial phase in the evolution of the service, though the transition from testing and refinement to 

broader application. 

4.6 Optimal electric or thermal load management (s3.2.6) 

The efficient management of energy systems is crucial for reducing consumption and emissions without 

necessitating significant investments in new equipment or advanced HVAC systems. Given that building 

operations account for a substantial portion of global energy use and emissions, implementing smart energy 

management strategies becomes imperative. DigiBUILD, through its s3.2.6-optimal electric or thermal load 

management, addresses this need by empowering facility managers with advanced tools and insights. This 

service facilitates the optimal management of electric and thermal loads, enabling a more efficient use of 

energy resources. By its application in the EMOTION pilot, managers can not only reduce operational costs but 

also contribute to a significant reduction in environmental impact. This service aligns with contemporary needs 

for sustainable energy solutions, offering a practical and impactful approach to energy management in 

buildings.  

4.6.1 Description of the Service 

The electric or thermal load management service effectively integrates real-time data analysis to manage 

energy more efficiently at Emotion facilities. This facility has a fleet of 10 EVs and a major energy-consuming 

device, a 40-kW heat pump. This service aims to address the limitations highlighted in section s3.2.3 by 

generating an optimal EV charging schedule derived from the predictions in s3.1.4. It is important to note, 

however, that these predictions might not always be accurate. Therefore, the heat pump's energy use is not 

considered in the service s3.2.3 which only focuses on optimizing EVs charge. The primary objective of this new 

service is to offer real-time, adaptable recommendations for EV charging that take into account live data and 

actual usage patterns. 

In this context, the service processes real-time data, including the power output of charging columns, the SoC 

of the EVs, as well as the real-time energy consumption of the PV system and the building. This approach 

allows for a comprehensive understanding of the current energy dynamics. Based on the balance between 

energy production and consumption, and in cases where predictions diverge from actual usage, the service 

dynamically adjusts the power allocated for EV charging. 

Moreover, when the optimal goal of maximizing self-consumption is constrained by plug limitations, this 

service functions as a decision support system within the DT framework. Governed by "if-based" rules, the 

algorithm responds to energy imports from the grid by suggesting either the disconnection of EVs or the 

adjustment of heat pump setpoint temperatures - lowering them in winter and raising them in summer. 

Conversely, when there's energy export to the grid, the system recommends connecting additional vehicles (if 

feasible) or adjusting the setpoint temperature in the opposite direction—increasing in winter and decreasing 

in summer. 

This intelligent approach to energy management is supported by scientific literature, which emphasises the 

importance of real-time data and adaptive control in optimizing energy use in buildings and facilities. Studies 
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have shown that such systems can significantly reduce energy costs and carbon emissions by optimizing energy 

consumption patterns, particularly in facilities with renewable energy sources and electric vehicle fleets. This 

adaptability not only ensures energy efficiency but also contributes to the grid's stability, making it a valuable 

addition to modern energy management strategies. 

4.6.2 Novelty 

The primary innovation of this service lies in its ability to manage various energy flows (including electric vehicle 

charging, grid interaction, and heat pump operations) in real-time, with the aim of reducing energy drawn from 

the grid. There are numerous instances in scholarly literature where similar approaches have been explored. 

For example, the work of Mathur et al. (22) and Uzair et al. (23) are relevant examples of real-time operational 

optimisation. This service plays a crucial role in the DT framework, particularly in determining optimal strategies 

for real-time EV charging and providing intelligent recommendations to managers. Applying this service in a 

practical case study allows for the exploration and validation of these algorithms, which are used in simulations 

or rely on historical data in existing literature. In addition, its innovation lies in its dynamic adaptability to actual 

usage patterns and live data, offering real-time, adaptable EV charging modulation. Therefore, the service's 

ability to adjust the power allocated for EV charging based on energy production-consumption balance and 

divergences from predictions showcases an advanced level of automation. This approach not only ensures 

energy efficiency but also contributes to grid stability, resonating with the focus on real-time data and adaptive 

control in optimizing energy use in facilities with renewable energy sources and electric vehicle fleets, as 

highlighted in current scientific literature (24). 

4.6.3 Development Progress 

Owing to the technical challenges highlighted in earlier deliverables, such as D3.1 and D5.3, progress towards 

real-world application was hindered. Specifically, the lack of historical data posed a significant barrier, leading 

to the creation of a theoretical algorithm that could not be empirically tested in a real-world context. 

However, with the eventual availability of data, a comprehensive development phase commenced. The 

previously conceptualised algorithm was programmed in Python, with clear definitions for inputs and outputs 

established. Currently, a more streamlined version of this algorithm is under development. This version, by 

analysing energy exchanges with the grid, is designed to calculate new modulation power levels for each 

connected electric vehicle and to uncover additional strategic approaches. 

4.6.4 Application on DigiBUILD Pilots 

The service under discussion, slated for implementation exclusively in the EMOTION pilot, will be explored here 

with a focus on its practical application in this pilot context. The central equations and operational principles 

of the algorithm are detailed to illustrate the capabilities of this preliminary version of the service. 

The algorithm functions consider the SoC of all vehicles as input, along with data on the power at each plug of 

the two charging stations, and the power exchanged with the grid. When there is power export (𝐸𝑒𝑥), the 

algorithm determines the energy amount that can be distributed among the connected EVs. In the case which 

the export is less than the maximum capacity of the plugs (𝐶𝑎𝑝𝑝𝑙𝑢𝑔), defined as (9), the algorithm recalculates 

the power assigning the energy in each plug.  

 
𝐶𝑎𝑝𝑝𝑙𝑢𝑔 = ∑ (11 − 𝐸𝑖,𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒)

𝐸𝑉𝑠 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑖=1

 (9) 
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In scenarios where the export surpasses the plug's power capacity, the algorithm advises which vehicle to 

charge first based on the highest EV capacity, defined as (10). Finally, the service suggests adjustments to the 

heat pump's setpoint temperature, depending on the time period. 

 𝐶𝑎𝑝𝐸𝑉 = (100 − 𝑆𝑜𝐶𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒) ∙ 𝐶𝑎𝑝𝑏𝑎𝑡𝑡𝑒𝑟𝑦 (10) 

In situations of excessive power import, the algorithm initially verifies whether the vehicles connected have 

reached the SoC demanded by the user, as calculated by s3.2.4 via the DT. Subsequently, the new plug capacity 

is determined using equation (11) which is specifically tailored to reduce power usage, contrasting with 

equation (9), in which 𝐸𝑚𝑖𝑛 is the minimum charging power that a charging station could reach.  

 
𝐶𝑎𝑝𝑝𝑙𝑢𝑔 = ∑ (𝐸𝑖,𝑟𝑒𝑎𝑙−𝑡𝑖𝑚𝑒 − 𝐸𝑚𝑖𝑛)

𝐸𝑉𝑠 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

𝑖=1

 (11) 

If the plug capacity is inadequate, particularly during high heating or cooling demands that cannot be covered 

by PV generation, the system suggests adjusting the setpoint temperature of the heat pump. Additionally, it 

recommends ensuring that such a modification does not result in discomfort.  

The source code can be found on GitHub: GitHub s3.2.6 

4.6.5 Next Steps 

In this preliminary form, the algorithm successfully meets the pilot's goal of real-time management of thermal 

and electrical loads at the charging stations. Future enhancements could refine its optimisation capabilities. 

For example, instead of modulating electric vehicle charging uniquely based on the achievement of the desired 

SoC, the algorithm could also consider whether the SoC can be attained within the required timeframe even 

with adjusted modulation levels. Additionally, a more precise selection of setpoint temperatures for the heat 

pump could be explored as an improvement once more data is gathered and analysed. This approach offers a 

promising avenue for advancing the algorithm's functionality and effectiveness in managing energy loads.  

https://github.com/digibuild-technology-release/s3_2_6_ENG
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5 Data-driven energy and non-energy services for 

enhanced comfort and people well-being 

Quantifying comfort has become increasingly significant given the substantial time people spend in indoor 

spaces during their daily routines, such as in offices, homes, and schools. Furthermore, the impact of indoor 

environmental conditions on human well-being and work productivity emphasises the importance of assessing 

and ensuring comfort. The need for comfort maintenance and monitoring is elevated by the potential 

advancements in sustainability and energy efficiency. Creating a comfortable indoor environment involves 

aligning energy consumption with user needs, thereby reducing energy costs. As a result, buildings with 

effective insulation and efficient energy systems, including lighting and HVAC systems, can not only minimise 

energy usage but also foster a conducive environment for occupant well-being. 

Within this context, the DigiBUILD project introduces two services: Enhanced Comfort and Wellbeing (s3.3.1) 

and the Comfort Performance Contract (s3.3.2). Based on the outcomes of Task 1.3 activities outlined in 

deliverable D1.2, the end-users poised to benefit from these services include facility managers, sustainability 

stakeholders, and policy makers. This is because the maintenance and monitoring of comfort contribute to 

improving buildings in terms of energy consumption and overall costs. Subsequent paragraphs will provide a 

detailed and technical description of the methodology that has been idealised and employed these services 

implementation. 

5.1 Enhanced comfort and well-being (s3.3.1) 

5.1.1 Description of the Service 

The objective of the service is to ensure comfort in indoor environments by harmonizing factors related to 

Indoor Environmental Quality (IEQ), such as indoor air quality (IAQ), thermal comfort, visual, acoustic comfort 

with considerations of energy consumption and costs. This is achieved through the analysis of data collected 

from sensors installed in various buildings. The evaluation of comfort and well-being is facilitated by the 

development and application of AI-based algorithms designed to quantify and predict comfort-related 

elements, such as the Thermal Sensation Vote (TSV), utilizing building data. The accuracy of these predictions 

relies on both historical and real-time data acquired from the sensor network in the pilot buildings. This AI-

driven approach aids various stakeholders in efficiently and sustainably managing buildings while ensuring a 

specified level of comfort for occupants. Beyond maintaining acceptable comfort levels, the service also targets 

the reduction of energy consumption and associated costs.  

The service will deploy a coaching solution, empowering end-users to effectively manage indoor building 

conditions. The comfort predictions generated by the AI model serve as feedback for end-users, allowing them 

to adjust indoor environmental conditions and restore optimal comfort. Additionally, within this service 

framework, direct feedback on indoor environmental and comfort conditions is gathered from end-users using 

survey-based approaches. This information is utilised in implementing the AI model to generate comfort 

predictions aligned with occupants' preferences. 

As described in deliverable D3.1 “First wave of DigiBUILD AI-based data-driven services for the built 

environment” (M12), the s3.3.1 service is implemented by considering the following phases (the reader can 

find their detailed description in D3.1): 

• Phase 0: Assessment model for Enhanced Comfort and Wellbeing.  
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• Phase 1: Integration of the data inside the service Data Lake—Interoperability and Quality.  

• Phase 2: Definition of the technical specifications of the service.  

• Phase 3: Baseline monitoring. Track energy consumption (T3.1) and track comfort parameters.  

• Phase 4: Profiling and individuation of anomalies.  

• Phase 5: Delivery of coaching solution for enhanced comfort and wellbeing.  

Following the submission of D3.1 (M12), a more detailed and technical definition of the comfort service was 

undertaken. This involved providing a technical overview of the components essential for the development of 

the service. UNIVPM specifically contributed by defining the software components and visualisation tools 

required for the practical application of s3.3.1 in pilot scenarios. In terms of software components, two comfort 

models were taken into consideration: the simplified Predicted Mean Vote (sPMV) and the adaptive comfort 

model. The reader will appreciate the developments for the sPMV model in the next paragraphs, while the 

adaptive model will be computed in the upcoming period, as reported in the paragraph 5.1.5. 

The sPMV and adaptive models utilise environmental parameters such as indoor temperatures, indoor relative 

humidity, CO2 levels, and user feedback as inputs. UNIVPM opted to implement both machine learning (ML) 

and artificial intelligence (AI) algorithms. Baseline ML models, including Random Forest, Naïve Bayes, K-Nearest 

Neighbour, Adaboost, and Bagging algorithms, were incorporated for comfort classification. Additionally, the 

Long Short-Term Memory (LSTM) Network was chosen to predict comfort by leveraging historical data from 

pilots considering different forecasting horizons. Moreover, within this context, the ML and AI approaches will 

be also exploited to predict the feedback of the users in terms of Thermal Sensation Vote (TSV). Another 

software component within the s3.3.1 architecture focuses on providing a model to forecast energy 

consumption based on comfort maintenance. 

Parallel to these software blocks, the s3.3.1 implementation involves the creation of two types of visualisation 

tools: a pop-up notification system and a dashboard. The pop-up notification system serves a dual purpose, 

collecting user feedback on their thermal sensation and offering recommendations to end-users for 

personalised actions to restore or maintain the identified comfort condition. The dashboard, on the other hand, 

is integrated into the s3.3.1 structure to provide an overview of indoor environmental conditions and energy 

consumption, considering the outputs of the implemented AI/ML-based models. 

Within the context of s3.3.1 deployment, the UNIVPM team has conceptualised the service architecture by 

highlighting each connection between the included elements mentioned before. The reader can appreciate 

three coloured boxes in Figure 47:  

- The pink box, denoted as 'A' in Figure 48, embodies the two comfort models integrated into the framework 

of s3.3.1. Specifically, Figure 48 illustrates that these two comfort models draw input from the DigiBUILD 

repository, identified as “Storage” in the figure. The input data requested encompass environmental 

parameters (e.g., indoor temperature, CO2, etc.) gathered through sensors installed at the pilots’ sites. 

Additionally, users’ feedback will also be sourced from this repository. For a more detailed view of this 

block, the reader can refer to Figure 38, where a zoomed-in image elucidates the implementation details 

of the two comfort models, namely the simplified PMV (sPMV) and adaptive models. They have been 

found in literature (25), (26) and are based on the comfort standard ASHRAE 55. The sPMV model (25) has 

been selected since it simplifies the quantification of comfort with respect to the standard PMV, making 

it more applicable in real-life contexts by relying on only two environmental parameters (such as indoor 

temperature and relative humidity). Furthermore, it has been already described in deliverable D5.3. As 

regards the adaptive model, it is based on the computation of an upper (𝜃𝑖  𝑚𝑎𝑥) and a lower (𝜃𝑖  𝑚𝑖𝑛) 
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comfort limit expressed as temperatures (26). Equation (12) illustrates the calculation of these limits, 

emphasizing their dependence on the mean outdoor temperature (𝜃𝑟𝑚). The adaptive model has been 

selected since it provides a range of temperatures (Equation 12) within which optimal thermal comfort for 

occupants is guaranteed. Furthermore, as reported in Figure 47, the implementation of this model will 

include also the user feedback in order to incorporate the occupant's experience in the building and 

observe its influence on the comfort measurement. As previously mentioned, the adaptive model is 

planned to be developed in the next months. 
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Figure 47: Block scheme of the whole service architecture. 
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 𝜃𝑖 max = 0.33 ∗ 𝜃𝑟𝑚 + 18.8 + 4                  

𝜃𝑖 min = 0.33 ∗ 𝜃𝑟𝑚 + 18.8 − 4                 
 

(12) 

 

The last software component included in this block of the service architecture (Figure 47) aims at 

predicting the users’ feedback, considering the feedback collected with the pop-up notification system 

() mentioned in the introductory part. The objective of this element is to forecast the subjective thermal 

sensation of occupants and examine its potential correlation with the indoor comfort conditions. This 

aspect will be technically developed in the next months. 

Figure 48 emphasises that the implementation of both models involves two distinct steps: data 

labelling and the application of ML baseline models and an LSTM network. In data labelling, 

environmental parameters serve as inputs. For the sPMV model, the label is the simplified PMV, while 

for the adaptive model, the temperatures outlined in Equation (12) serve as the labels. The results of 

this operation and the other parameters retrieved from the repository (e.g., CO2, indoor Temperature, 

Outdoor temperature, users’ feedback, etc.) contribute to the computation of ML and AI models 

illustrated in Figure 48. The generated outcomes are stored in the project repository, as indicated in 

Figure 48. 

 

Figure 48: Section of s3.3.1 architecture dedicated to comfort models. 

- In Figure 47, it is possible to note also a blue box. It includes the visualisation tools included in the technical 

architecture of the service. The first visualisation tool is a pop-up notification system which retrieves the 
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users’ feedback about their thermal sensation but also provides recommendations to maintain or improve 

the indoor comfort condition. The reader can appreciate from Figure 47 that the users’ feedback will be 

stored in the “Storage”, while the recommendations will be provided in accordance with the data collected 

in the project repository. Furthermore, as it is possible to note from Figure 37, the user feedback collected 

with this methodology will be exploited as label in the comfort models software block (Figure 48). 

Concerning the second visualisation tool, Figure 49Figure 51 presents a mock-up of the dashboard where 

end-users can consult graphs, charts, and tables depicting predicted comfort levels and the environmental 

conditions of the building. Data for populating the dashboard will be sourced from the repository. The 

reader can also appreciate from Figure 49 that recommendations are also intended to be visualised. 

 

Figure 49: Section of s3.3.1 architecture dedicated to the visualisation tools. 

 

- The last box shown in Figure 47 is the red one. This section aims at developing an optimisation 

algorithm considering forecasted energy consumption and comfort. Specifically, this approach aims to 

determine an optimal temperature ensuring minimal energy consumption and proper comfort level. 

For this reason, Figure 50 presents a part dedicated to energy forecasting (through dedicated AI 

algorithms, such as the LSTM network) and a part dedicated to the optimisation activity. For the 

computation of both algorithms, input data will be retrieved from the project repository (as shown in 

Figure 47) and the outcomes of the algorithms will be stored in it. However, given the pivotal role that 

energy forecasting component has, a collaboration with CARTIF (leader of Task 3.1 “AI-based services 
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for finer grained energy profiling & forecasting”) has been established and future technical 

developments will follow. 

 

Figure 50: Section of s3.3.1 architecture dedicated to energy models. 

The reader can find  the original file of the described block scheme (Figure 47) on GitHub in order to provide 

a deeper and more detailed analysis of the whole architecture. 

Additional technical aspects were already reported into deliverable D5.3 titled "Pilots’ Execution 

Documentation – Pre-pilot Phase" (M17). Together with D3.1, this document shows the initial deployment of 

the service during the pre-pilot phase, presenting associated results and limitations. It serves as a foundational 

reference for the initiation and improvement of the first concrete implementation of the specified software 

components. Consequently, readers seeking deeper insights into the models and analysed data are advised to 

refer also to D5.3 for comprehensive technical details. 

All technologies enclosed in s3.3.1 architecture will be implemented through the Python language as already 

outlined in D3.1 and all the Python codes developed within this framework have been uploaded in DigiBUILD 

repositories (i.e., Jupyer, GitHub, MLflow). The links to access them follows:  

- Jupyter: http://digibuild.epu.ntua.gr:8888/lab/tree/s3.3.1 . 

- MLflow: http://digibuild.epu.ntua.gr:5000/ . 

- Github: https://github.com/digibuild-technology-release/s3.3.1_s3.3.2_UNIVPM .

https://github.com/digibuild-technology-release/s3.3.1_s3.3.2_UNIVPM/blob/e297ac334b0fa400a87e1851d68a2528c2f3edf0/Block%20scheme%20T3.3.drawio
http://digibuild.epu.ntua.gr:8888/lab/tree/s3.3.1
http://digibuild.epu.ntua.gr:5000/
https://github.com/digibuild-technology-release/s3.3.1_s3.3.2_UNIVPM
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5.1.2 Novelty  

The innovative aspects enclosed in s3.3.1 touches different dimensions of digital service development. 

From a technical point of view, the exploitation of ML and AI techniques to classify and predict comfort 

in terms of sPMV detaches s3.3.1 from the state of the art (25), (26).Moreover, the pivotal role of the 

user in s3.3.1 development and application represent also an important novelty. In fact, in most cases of 

comfort assessment, user feedback is often sought for a direct but subjective evaluation of thermal 

sensation, yet no coaching solution is usually considered. In this context, users’ feedback is pivotal for 

the implementation of the ML and AI algorithms. Furthermore, the important role of the end-user is 

based on the recommendations that should be delivered to actively adjust the environmental 

surroundings and maintain or guarantee a proper comfort level (coaching solution).  

5.1.3 Development Progress 

This paragraph presents the progress brought by the activities conducted during these months in 

accordance with the s3.3.1 outcomes reported in D3.1 and D5.3. Indeed, deliverable D3.1 presents the 

description of the general architecture designed for s3.3.1 together with the preliminary results of an 

early baseline monitoring (Phase 3) developed considering the available historical data from Pilot 5b 

and Pilot 2. These outcomes have led to the MS4 (M13) with the “‘First wave’ of DigiBUILD solutions 

(technology micro-services components/enablers)”. In deliverable D5.3, instead, the technical progress 

of the previous results has been presented. In particular, the development and application of ML baseline 

models and of a preliminary version of the LSTM network has been described in the document together 

with the results in the framework of the pre-pilot phase.  

The upcoming months have been focused on the improvement of the service from data and models 

point of view, in accordance to the outcomes reported in previous deliverables (D3.1, D5.3). Thus, the 

development progress has been focused on: 

- Data Analysis and data labelling, 

- Improvement of the baseline models and LSTM network, 

- Development of the pop-up notification system. 

These steps will be described in the following paragraphs. 

Data analysis and data labelling 

The examination of the results outlined in D5.3, particularly the validation metrics for both baseline 

models and LSTM, has revealed the necessity for improvements at dataset level. Indeed, the accuracies 

obtained during the pre-pilot phase highlight the influence of an unbalance among the input data and 

of the unavailability of data in some pilots. Consequently, an additional round of data analysis has been 

conducted to improve the service. For instance, with respect to what has been presented in both D3.1 

and D5.3, for pilot 5b and Pilot 2 new environmental data have been included in the input dataset of the 

ML and AI algorithms. This has triggered also a new data labelling session which has been computed 

with the python function already available on GitHub from M13. This activity has been implemented with 

Python and the codes are on Jupyter repository.  

https://github.com/digibuild-technology-release/s3.3.1_s3.3.2_UNIVPM/blob/b2cc391aa3e4f0c254a96c5ba6323341fa625bf6/sPMV_v1.py
http://digibuild.epu.ntua.gr:8888/lab/tree/s3.3.1/focchi_pilot


 D3.2: ‘Second wave’ of DigiBUILD AI-based data-driven services for the built environment  

 

100 

Improvement of baseline models and LSTM network 

In accordance with the progress described in the above lines, baseline models and LSTM network have 

been improved with respect to the results shown in previous deliverables (D3.1, D5.3). As regards the 

baseline models, they have been implemented to classify comfort in terms of sPMV. The dedicated 

Python codes have been applied to different pilots, and their validation metrics will be discussed in the 

following paragraphs. As regards the LSTM network, it has been implemented as regression model to 

predict comfort in terms of sPMV. Specifically, two trials have been computed to predict comfort 

considering a forecasting horizon of 1 hour and 24 hours. In both cases, the LSTM model has been built 

with two layers characterised by 64 neurons and a dense layer characterised by a number of units equal 

to the forecasting horizon. Python was used as the programming language, and the dedicated codes 

are available on DigiBUILD Jupyter repository and on Github.  

Pop-up notification system development  

Unlike the alpha version of s3.3.1, the current stage of the service development, the pop-up notification 

system has been implemented and tested internally in some of the UNIVPM offices. In particular, the 

developed system is dedicated only to collecting user feedback on their thermal sensation, expressed as 

Thermal Sensation Vote (TSV). From a technical point of view, this system consists of a webpage (Figure 

51), where the user should provide the following information: the pilot, the room, the building, the floor, 

and his/her TSV. This web page is accessible through the following link: https://digibuild-

demo.eu/digibuild/. All the requested info, once inserted, is stored in a dedicated database which is 

reachable at the following link: https://digibuild-demo.eu/phpmyadmin/ . The system has been already 

tested internally in UNIVPM offices. For pilot-level testing, scheduled for January, a detailed protocol has 

already been shared with the pilots' leaders to facilitate feedback collection. 

 

http://digibuild.epu.ntua.gr:8888/lab/tree/s3.3.1/focchi_pilot
https://github.com/digibuild-technology-release/s3.3.1_s3.3.2_UNIVPM/tree/bdde131e53cf42ab98d3177819436745c029e778/software%20components%20v2
https://digibuild-demo.eu/digibuild/
https://digibuild-demo.eu/digibuild/
https://digibuild-demo.eu/phpmyadmin/
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Figure 51: Web page developed to collect users' feedback. 

 

The pop-up notification system has been developed through PHP programming language, JavaScript 

and HTML in order to build up a dynamic web page that stores data on the mentioned database. The 

codes are available on the GitHub repository and on Jupyter.  

 

5.1.4 Application on DigiBUILD Pilots  

 Pilot 2 – EDF 

In this paragraph it will be possible to appreciate some results of the application of the baseline models 

and LSTM network in Pilot 2 buildings. As already described in D3.1, Pilot 2 develops in the EDF offices. 

Environmental data are collected from the ground floor and first floor of the building from two kind of 

sensors called respectively Ellona sensors and Ethera sensors. In this pilot, energy meters are also 

installed to collect energy (kWh) and power data (kW). For more details about the pilot sites and the 

exploited data, the reader can consult D3.1. Moreover, the reader is also invited to analyse deliverable 

D5.3, for the outcomes of the first application of the algorithms during the pre-pilot phase. Specifically, 

in the document the early application of the service on the EDF pilot scenario can be appreciated. 

Starting from the results of D5.3 and the issues raised during the pre-pilot phase, s3.3.1 has been applied 

to EDF pilot in order to get better performances of the algorithms.  

The first action point has been implemented by the EDF team and it regarded data analysis and the 

subsequent data labelling. Indeed, during these months some data formats have changed due to data 

https://github.com/digibuild-technology-release/s3.3.1_s3.3.2_UNIVPM/tree/main/popup_v1
http://digibuild.epu.ntua.gr:8888/lab/tree/s3.3.1/popup
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refreshment. Consequently, data have been analysed and resampled gaining three datasets regarding 

the ground floor, the first floor north and the first floor south of the pilot building. The codes applied 

for this activity are available in the DigiBUILD Jupyter Repository. At this stage, feature selection has 

been applied on the data collected from the ground floor and first floor. In particular, three correlation 

matrices have been computed in python and they are reported in Figure 52, Figure 53, Figure 54. 

According to them, the features that have been selected as inputs data for the ML and AI algorithms 

have been the following: indoor temperature (°C), indoor relative humidity (%), CO2 (ppm) and outdoor 

temperature (°C). Specifically, from the correlation matrices, the service developers have selected the 

parameters with high accuracy value with the label (sPMV). Then, the input datasets have been enhanced 

with those parameters that do not correlate each other. In other words, if some variables show high 

correlation values (Figure 52) within each other, only one of them is kept in order to avoid inter-

correlation among input data and reduce the possible overfitting issues that may emerge during the 

algorithms’ implementation. The reader can appreciate the exploited input datasets in Table 6. The 

technical partners have decided to include data collected from the ground floor and first floor north in 

accordance to the quantity of available historical data. 

 

Figure 52: Correlation matrix - First Floor South case. 

 

http://digibuild.epu.ntua.gr:8888/lab/tree/s3.3.1/edf_pilot
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Figure 53: Correlation matrix - First Floor North case. 

 

 

Figure 54: Correlation matrix - Ground Floor case. 
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Data labelling has been applied exploiting the python function implemented for the computation of 

sPMV (link to Jupyter repository).  

At this point, the implementation of baseline models (Random Forest, Naïve Bayes, Decision Tree, K-

nearest Neighbours, Adaboost, Bagging) have started. The algorithms have been trained and tested as 

classificators and their validation metrics are reported in Table 7 and Table 8, respectively for the first 

floor north and ground floor. The outcomes reported in Table 7 and Table 8 highlight the high 

performance of the algorithms and the improvements of the models with respect to past results (D5.3). 

For instance, in the First Floor North case (Table 7), the mean accuracy is 97.1%, underlining the proper 

capability of the chosen algorithms in classifying sPMV starting from the available historical data. 

 

Table 6: Datasets exploited for the baseline models and LSTM algorithm implementation – Pilot 2. 

 

Input data Output 

Dataset 1 – First Floor North • Indoor Temperature (°C) 

• Indoor Relative Humidity (%) 

• CO2 (ppm) 

• Outdoor temperature (°C) 

sPMV 

Dataset 2 – Ground Floor • Indoor Temperature (°C) 

• Indoor Relative Humidity (%) 

• CO2 (ppm) 

• Outdoor temperature (°C) 

sPMV 

 

Table 7: Validation metrics of the baseline models implemented with data collected from the First Floor 

North. 

Baseline model Accuracy F1_score Precision Recall 

Random Forest 99.9% 99.7% 99.8% 99.7% 

Decision Tree 99.8% 99.5% 99.7% 99.3% 

Naive Bayes 93.9% 82.6% 82.8% 82.8% 

KNN 98.6% 96.1% 96.9% 95.3% 

Adaboost 90.5% 55.2% 66.4% 75.5% 

Bagging 99.8% 99.5% 99.8% 99.4% 

http://digibuild.epu.ntua.gr:8888/lab/tree/s3.3.1/focchi_pilot/sPMV_v1.py
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Table 8: Validation metrics of the baseline models implemented with data collected from the Ground Floor. 

Baseline model Accuracy F1_score Precision Recall 

Random Forest 99.9% 98.9% 97.9% 99.9% 

Decision Tree 99.8% 98.9% 97.9% 99.9% 

Naive Bayes 99.1% 81.5% 73.2% 99.6% 

KNN 99.6% 83.2% 86.7% 80.4% 

Adaboost 99.9% 98.9% 97.9% 99.9% 

Bagging 99.9% 99.5% 98.9% 99.9% 

As regards the application of the LSTM network (described in section s1.1.3), some example of its 

outcomes can be appreciated in Figure 55 and Figure 56. In particular, the LSTM has been implemented 

considering data collected from both ground floor and first floor north to forecast comfort (as sPMV) 

for the next hour (Figure 55b, Figure 56b) and for the next 24 hours (Figure 55a, Figure 56a). The 

performance of the algorithm has been evaluated through the metrics reported in Table 9 and Table 10. 

The values of MAE and MSE points out the high performance of the algorithm in predicting comfort (as 

sPMV) for future time periods. For example, in the case of the LSTM applied in the First Floor North of 

the building (Table 8), the validation metrics (e.g., MAE= 0.09, MSE=0.01) reveal accurate predictions of 

the sPMV for the chosen forecasting horizons. 
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Figure 55: Comparison of Predicted sPMV and the actual sPMV for the four different seasons. In 

this case, the sPMV prediction has been done for the next 24 hours (a) and the next hour (b). - 

First floor north case. 
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Figure 56: Comparison of Predicted sPMV and the actual sPMV for the four different seasons. In 

this case, the sPMV prediction has been done for the next 24 hours (a) and the next hour (b). - 

Ground floor case. 

 

Table 9: Validation metrics of the LSTM network for the prediction of sPMV of the next hour and next 24 

hours (First Floor North case) – Pilot 2. 

 MAE MSE 

LSTM for predicting 

the next hour 
0.09 0.01 

LSTM for predicting 

the next 24 hours 
0.08 0.02 

 

Table 10: Validation metrics of the LSTM network for the prediction of sPMV of the next hour and next 24 
hours (Ground Floor case) – Pilot 2. 

 MAE MSE 

LSTM for predicting 

the next hour 
0.007 6.18 x 10−5 

LSTM for predicting 

the next 24 hours 
0.01 0.003 

 Pilot 5b – FOCCHI 

In deliverable D5.3, there are the last updated results of s3.3.1 application on Pilot 5b. From M15 up to 

M19, s3.3.1 development in Pilot 5b has been focused on the analysis of Focchi historical data collected 

from Demoroom 2 and their reorganisation to create a balanced input dataset for the ML and AI 
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algorithms, overcoming the data issues highlighted in D5.3 (the reader is invited to consult the 

mentioned document). In particular, the features selected for the implementation of the models in Pilot 

5b are: indoor temperature (°C), indoor relative humidity (%), indoor CO2 (ppm), outdoor temperature 

(°C) and external light intensity (lux). This feature selection step has been guided by analysing the 

correlation matrix reported in Figure 57. Firstly, the service developers have observed which parameter 

had a high correlation value with the label (sPMV). Then, other parameters have been chosen with the 

following criteria: to avoid inter-correlation among input variables and the subsequent overfitting issue 

that may emerge during the models computation, the parameters that exhibited high correlation within 

each other have been excluded. This step has produced the input dataset reported in Table 11.  

The next step has been the implementation of the baseline ML models (uploaded on MLflow), whose 

validation metrics are reported in Table 12. These results reveal the improvements of these algorithms, 

given the high performance reached in terms of accuracy, f1_score, recall and precision. For example, 

from Table 10, it is possible to infer that the chosen ML algorithms successfully classify comfort (as sPMV) 

given the mean accuracy of 91.6%. 

 

 

Figure 57: Correlation matrix to select the input features. 

 

Table 11: Dataset exploited for the baseline models and LSTM algorithm implementation – Pilot 5b. 

 Input data Output 

http://digibuild.epu.ntua.gr:5000/#/experiments/2
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Dataset – Demoroom 2 

• Indoor Temperature (°C) 

• Indoor Relative Humidity (%) 

• CO2 (ppm) 

• Outdoor temperature (°C) 

• External light intensity (lux) 

sPMV 

 

Table 12: Validation metrics of the baseline models implemented for Pilot 5b. 

Baseline model Accuracy F1_score Precision Recall 

Random Forest 96.8% 93.3% 95.5% 91.6% 

Decision Tree 95.6% 91.3% 90.8% 91.9% 

Naive Bayes 90.3% 76.1% 76.8% 77.7% 

KNN 86.2% 51.8% 68.2% 52.4% 

Adaboost 84.2% 72.5% 72.7% 72.9% 

Bagging 96.7% 93.2% 95.3% 91.4% 

As regards the LSTM network, the model has been trained by considering the above mentioned input 

data (Table 11) collected from 6 out of 4 rooms of the Demoroom 2. The outcomes of LSTM model 

application can be appreciated in Figure 58 and Figure 59. In particular, the reported graphs compare 

the sPMV calculated with Focchi historical data (label) with the sPMV predicted for the next hour (Figure 

58) and the next 24 hours (Figure 59). The high performance of the algorithm is underlined by the 

validation metrics reported in Table 13. Indeed, MAE and MSE values demonstrate the accurate 

capability of the developed network in predicting sPMV for the two different forecasting horizons. 
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Figure 58: Comparison of Predicted sPMV and the actual sPMV for the four different seasons. In 

this case, the sPMV prediction has been done for the next hour. 
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Figure 59: Comparison of Predicted sPMV and the actual sPMV for the four different seasons. In 

this case, the sPMV prediction has been done for the next 24 hours. 

 

Table 13: Validation metrics of the LSTM network for the prediction of sPMV of the next hour and next 24 
hours - Pilot 5b. 

 MAE MSE 

LSTM for predicting 

the next hour 
0.1 0.019 

LSTM for predicting 

the next 24 hours 
0.085 0.015 

 

The python codes used at this stage of the project are online in the Jupyter repository  and on the Github 

repository. 

 

5.1.5 Next Steps 

In order to enter the full pilot operation phase at M21 with s3.3.1 ready to be tested and used in the 

pilots’ sites, the next steps should be taken into account: 

1. Apply the previously described software components on the remaining pilots. 

2. Start the real-time implementation of the service. 

3. Compute ML and AI models (Figure 48) to predict the TSV starting from the feedback collected 

with the pop-up notification system.  

4. Start the implementation of the adaptive comfort model (Figure 48). 

5. Exploring additional comfort dimensions (e.g., visual comfort, IAQ, etc.) could be a valuable next 

http://digibuild.epu.ntua.gr:8888/lab/tree/s3.3.1/focchi_pilot
https://github.com/digibuild-technology-release/s3.3.1_s3.3.2_UNIVPM/tree/main/software%20components%20v2
https://github.com/digibuild-technology-release/s3.3.1_s3.3.2_UNIVPM/tree/main/software%20components%20v2
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step in achieving a comprehensive assessment of comfort enhancing its overall evaluation. 

6. Finalise the integration of the s3.3.1 with WP4 tasks, specifically Task 4.1 for Pilot 5b Digital Twin. 

7. Test the pop-up notification system in the pilot sites.  

8. Start the implementation and development of the dashboard. 

9. Start the implementation of the software component dedicated to the energy forecasting 

related to comfort maintenance. Within this framework, UNIVPM has started a collaboration 

with CARTIF (leader of Task 3.1) in the past months.  

5.2 Comfort Performance Contract (s3.3.2) 

5.2.1 Description of the Service 

The primary objective of the Comfort Performance Contract (CPC) is to deliver a service ensuring the 

satisfaction of the end-user by maintaining optimal indoor conditions decided by the end user at a pre-

established energy cost. This service assumes responsibility for the comfort and well-being of individuals 

within the built environment through the establishment of a contractual agreement linking its energy 

costs (and consumption) directly to the indoor comfort condition. Users have the flexibility to specify 

their desired comfort levels based on the building type and historical energy usage. Additionally, the 

option exists to incorporate sensor network installations if necessary to ensure the agreed level of 

comfort. 

This service will be deployed considering the phases listed below which have been already described in 

deliverable D3.1: 

• Phase 0: Assessment model for Enhanced Comfort and Wellbeing.  

• Phase 1: Integration of the data inside the service Data Lake—Interoperability and Quality  

• Phase 2: Definition of the technical specifications of the service. 

• Phase 3: Baseline monitoring. Track energy consumptions (T3.1) and track comfort parameters.  

• Phase 4: Profiling and individuation of anomalies.  

• Phase 5: Service Level Agreement (SLA) with stakeholder.  

• Phase 6: Budget simulation and refinement of technical specification and SLAs.  

• Phase 7: CPC management.  

It is possible to note that, at this stage, s3.3.2 shares the first 4 phases of its development with s3.3.1. 

This implies that the software components and visualisation tools described in the previous chapter 

regards also the CPC. Hence, s3.3.1 and s3.3.2 developed parallel from a technical point of view. However, 

the peculiarity of s3.3.2 is the development of the financial and legal framework that links the comfort 

assessment and maintenance with the energy consumption and the related costs. In other words, what 

differentiates s3.3.1 and s3.3.2 is the economic bond that s3.3.2 aims to establish between indoor 

comfort maintenance and energy consumption in order to enhance people's well-being at proper 

energy costs.  
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5.2.2 Novelty 

The novelty introduced by this service is the possibility to provide an economic plan which guarantees 

comfort at established energy costs in specific indoor environment; in opposition with the current 

situation in the energy market, now at the centre of the contract there is the comfort of the occupant, 

rather than the energy consumption. This financial link that s3.3.2 will establish aims at improving people 

experience in a certain building and the efficiency of this last from an economic point of view. 

Furthermore, given that s3.3.2 shares the same software blocks with s3.3.1, the usage of AI and ML 

approaches for comfort prediction and classification represents another innovative aspect that CPC 

service will bring in the built environment scenario.  

5.2.3 Development Progress 

Starting from what has been reported in D3.1 and in D5.3, s3.3.2 progress has been characterised by the 

establishment of a collaboration with the UNIVPM faculty of Economy. Indeed, the main focus during 

this period has been producing the document that formalises the financial bond between comfort 

maintenance and energy consumption to guarantee indoor comfort. The technical knowledge about 

finance and management provided by the UNIVPM colleagues of economy has been pivotal for the 

creation of the first draft of the contract. In accordance with their expertise, the document has been 

systematically organised through the employment of a modular approach, delineating every aspect of 

IEQ, including the norms and standards that regulates IEQ. This methodological framework has been 

necessary, given that each dimension of IEQ can impact on a building in terms of energy consumption 

and efficiency. Furthermore, adopting this approach provides the potential end-user with the freedom 

to invest in a comfort aspect that aligns more conveniently with the specific needs of the case study. 

Consequently, the document encompasses the following key sections: 

1. Definition of the Parties: in this part, the roles of client and operator are clarified. In particular, 

this part should be filled with the personal data of both client and economic operator.  

2. Premises: the document points out two primary premises where the fundamental aspects and 

concepts at the base of the IEQ are explained with the support of the reference standards (such 

as UNI EN ISO 9920, ASHRAE 55, UNI EN ISO 7726, etc.). The contractual objective is to furnish 

a comprehensive plan that encompasses and addresses various facets of comfort (e.g., thermal 

comfort, visual comfort, and indoor air quality) within an indoor environment. It is fundamental 

that the client is aware of all of these aspects.  

3. Object of the Contract: This section encapsulates three distinct articles. The initial article 

delineates the terms and conditions governing the relationship between the involved parties, 

specifying these terms for each aspect of IEQ. The focus of the second article revolves around 

privacy concerns and the administration of personal data. The concluding section delineates the 

financial bond between the parties, defining the fees and payment modalities that will be 

activated upon the execution of the contract. 

5.2.4 Application on DigiBUILD Pilots 

The CPC document, designed in Italian language, is currently undergoing translation into English (M20). 

It will be applied on two pilots of the project, which are Pilot 5b (FOCCHI) and pilot 7 (IEECP). While it 

has not yet been tested on the Pilots in this stage of the project, it is noteworthy that all the technical 
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applications concerning comfort prediction and classification, as detailed in section 1.1.4, extend to 

s3.3.2. Indeed, the contract emphasises the assurance of comfort at specified energy costs, achieved 

through a comprehensive comfort evaluation utilizing techniques developed within the s3.3.1 context. 

The next action point is focused on retrieving feedback from Pilot leaders to gather insights from the 

end user perspective about the contract, and also enhance the quality and completeness of the 

document. This collaborative effort aims also to engage potential users effectively. In fact, in the 

upcoming period the involvement of end-users will start to provide valuable feedback within a real-life 

context (Pilot sites). This approach aims at refining the document for optimal applicability in the next 

full-pilot operation phase. 

5.2.5 Next Steps 

With the aim of reaching the full pilot operation phase with a complete version of the CPC in the 

framework of s3.3.2, the following activities will be developed in the upcoming period: 

1. Provide the CPC document to the pilots’ leaders to retrieve feedback. 

2. Engage end-users of the related pilots to collect feedback about the contract. 

3. Finalise the document.  

All the next steps listed and described in section 1.1.5 apply also in this case given the common path 

that s3.3.2 and s3.3.1 shares from a software point of view. 



 D3.2: ‘Second wave’ of DigiBUILD AI-based data-driven services for the built environment  

 

116 

6 Data-driven services for renovation roadmaps and 

energy efficiency financing 

The DigiBUILD project continues to advance in its mission to foster renovation and heighten energy 

efficiency in the building sector. This next phase of the project will leverage advanced data-driven 

solutions to chart renovation paths and provide innovative financing options for energy efficiency. Our 

focus in this section is to outline the newly developed services aimed at realizing these goals. 

One of the key targets is the execution of sophisticated modelling strategies to enhance demand-side 

management and pinpoint effective energy efficiency upgrades in a benchmark building. In the 

subsection titled "3.4.1 – Financing and Policy Making for Energy Efficiency," we will introduce an evolved 

model: the Enhanced Dynamic high-Resolution Demand-side Management (e-DREEM). This upgraded 

model is designed to evaluate building performance more comprehensively, offering tailored solutions 

for optimal energy usage. Its objectives are not only to facilitate long-term energy savings and tackle 

energy poverty but also to incorporate cutting-edge intelligent algorithms and advanced analytical 

techniques for a more effective building energy management system. 

Further, under "3.4.2 – Comprehensive One-stop-shop for Energy Efficiency," we are developing an 

integrated platform to streamline energy efficiency retrofitting processes in buildings. This platform 

stands out for its holistic evaluation approach, examining the impact of retrofitting actions not just in 

energy terms but also considering economic, environmental, and social benefits. The platform's primary 

aim is to heighten the awareness of building owners and managers about energy efficiency measures, 

equip them with the necessary knowledge and tools for informed decision-making, and provide access 

to various financing options and incentives at both national and local levels for energy efficiency 

upgrades. 

In essence, the expanded services under the DigiBUILD project are set to significantly lower energy 

consumption and greenhouse gas emissions in the building sector. This initiative promotes sustainable 

and cost-effective energy solutions. The ongoing development and implementation of these services 

are anticipated to foster a more efficient, transparent energy market, yielding benefits for building 

owners, users, and the broader environment and society. 

6.1  Energy efficiency financing and policy making (s3.4.1) 

6.1.1 Description of the Service 

The objective of s.3.4.1 is to facilitate the decision-making process of building owners/ users with regards 

to their building’s renovation considering the energy consumption and the related costs of interventions. 

In this respect, the ultimate premise of this service is to develop integrated renovation roadmaps 

including different portfolios of measures and financing options using the DREEM model (27). The 

DREEM model is described in detail in deliverable D3.1 “First wave of DigiBUILD AI-based data-driven 

services for the built environment” (M12).   

Furthermore, as described in D3.1, the s3.4.1 service is implemented following 7 main steps (the reader 

can find their detailed description in D3.1): 
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• Step 1: Collection of data related to building characteristics and energy consumption related 

data.  

• Step 2: Creating the dynamic energy simulation model of the building before interventions 

(baseline) 

• Step 3: Calibrating the model using the data collected for the building  

• Step 4: Collecting the preferences of building interventions (a checklist of possible renovation 

actions has been deployed) 

• Step 5: Simulating the energy efficient scenarios  

• Step 6: Conducting the technoeconomic assessment  

• Step 7: Wrapping up the possible renovation actions with potential policy/ financing solutions 

into concrete renovation roadmaps.  

The service is currently being implemented for the IEECP pilot buildings. By developing and calibrating 

the models for these buildings has helped us understand the data needs and requirements, as well as 

potential limitations for the users and comments after the submission of D3.2 and the 1st Technical 

workshop have given us constructive feedback to start working on a user interface for s.3.4.1. 

6.1.2 Novelty 

Estimating heating and cooling demands is a major issue related to evaluating potential energy-saving 

actions for buildings. Existing building models are usually either too complex and computationally 

expensive or too simple to adequately predict a precise load profile. With developments in building 

energy tools such as TRNSYS and Energy+, detailed building models have been directly used for energy 

simulations. However, the simulations of such models are often time-consuming, the number of 

buildings to simulate is limited and modelling multiple energy-saving actions further increases the 

demand, time, and complexity of the simulations (28). Additionally, deep energy retrofit measures in 

buildings require very high initial investment costs and their benefits accrue only slowly over time. It is 

therefore crucial to identify retrofit measures which are not only beneficial for the environment but will 

also incentivise the owner of the buildings and will ensure effective private and public budget spending 

(29). The s.3.4.1 aims to tackle both these obstacles in order to facilitate building owners and users to 

choose their renovation pathway considering not only the energy savings potential of different 

renovations measures but also their cost-effectiveness and other potential financing options. By 

providing their building data characteristics (as displayed in detail in 6.1.4) and filling in a checklist with 

their actions of preferences building owners can get back a detailed renovation roadmap facilitating 

them with the decision-making process and reassuring them about the effectiveness of the measures.  

6.1.3 Development Progress 

The service has been successfully applied to two pilot buildings, with two additional applications 

currently in progress. Specifically, it has been implemented in two IEECP pilot buildings, one located in 

Attica, Greece, and another in the Netherlands. Data have been currently collected for two more IEECP 

buildings. Furthermore, have contacted the FOCCHI pilot to gather some missing information regarding 

the building characteristics (e.g., the total aera of the walls of the buildings) in order to proceed with the 

simulations. Finally, discussions have been initiated with the WP3 leader (NTUA) in order to start working 

also on the interface that will allow the users to use the service.  
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6.1.4 Application on DigiBUILD Pilots 

 IEECP pilot – Attica, Greece 

6.1.4.1 Pilot characteristics  

The first application of s.3.4.1 for the case of the IEECP pilot concerns an apartment located in Attica, 

Greece. The building specifications were collected through a template (presented in detail in the 

DigiBUILD Deliverable 3.1 First wave' of DigiBUILD AI-based data-driven services for the built environment) 

and are displayed below. In addition, data related to the energy consumption of the apartment (e.g., 

data from an electricity bill) were shared with the modelling team to facilitate establishing the baseline 

consumption of the building/apartment and for calibration purposes.  

Table 14: Characteristics of the IEECP pilot in Attica. 

Pilot: IEECP - Attica Pilot 

Location and climate characteristics 

Country: Greece 

Region (e.g., town, municipality, etc.): Attica 

Climate/ Climate Zone: Climate Zone B 

Building Characteristics  

Type of building/ usage: Apartment 

Year of Construction or Renovation: 1985 

Building size: 1 basement level and 4 ground levels 

Total Floor area of the building   125 m2 

Total area of external walls of the buildings: 52.5 m2 

Total area of Wall1: 24 m2 

Total area of Wall2: 24 m2 

Total area of Wall3: 4.5 m2 

Total Roof area of the building: 0 m2 

Windows system: 

Total windows area: 24 m2 

Total area of Window1: 6.6 m2 

Total area of Window2: 6.6 m2 

Total area of Window3: 2.75 m2 

Total area of Window4: 2.75 m2 

Total area of Window5: 2.75 m2 

Total area of Window6: 1.3 m2 

Total area of Window7: 1.3 m2 

Building envelope features/ Construction features (U-values) 
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Uwall: 1 W/m²/K 

Ufloor: 2 W/m²/K 

Ufloor: 2 W/m²/K 

Uwindow: 3 W/m²/K 

Building system 

Heating system: Central Oil Boiler 

Nominal capacity: 13kW 

Cooling system: AC Split 

Nominal capacity: 8.9 kW 

EER (if available): 5 

Lighting equipment: 46 lightbulbs 

Lighting equipment capacity: 30 kW 

Other Parameters 

Occupancy: 2 people 

Operating schedule: 24hrs 

  

We have started the application by using the data presented above to create a simulation model of a 

residential building in Attica, Greece as presented in Figure 60. 

 

Figure 60: Simulation environment in Dymola showing the model of the IEECP pilot in Attica, 

Greece. 

6.1.4.2 Analysis and results   

After calibrating the model and deriving the baseline energy consumption of the apartment we analyse 

the effect of the implementation of different energy efficiency measures (EEM). These include: 

• EEM1: building envelop refurbishment (this includes windows replacement with more energy-

efficient glazing, and exterior wall insulation) 

• EEM2: replacement of the oil boiler with a gas boiler  
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• EEM3: replacement of the oil boiler with a heat pump 

The total annual energy consumption of the apartment for the baseline scenario as well as after the 

implementation of the measures are presented in the following graphs. In addition, the energy 

consumption is disaggregated to the thermal energy consumption and the energy used for cooling and 

operation of other appliances.  
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Figure 61: Total energy consumption for the baseline scenario and after the implementation of 

EEM1, EEM2, and EEM3 

 

Figure 62: Annual thermal energy consumption for the baseline scenario and after the 

implementation of EEM1, EEM2, and EEM3 
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Figure 63: Annual energy used for total cooling purposes and operation of other appliances for 

the baseline scenario and after the implementation of EEM1, EEM2, and EEM3 

Furthermore, the following graphs present the average daily total, heating and cooling and other 

appliances energy consumption respectively. 
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Figure 64: Average daily energy consumption for the baseline scenario and after the 

implementation of EEM1, EEM2, and EEM3 

 

Figure 65: Average daily thermal energy consumption for the baseline scenario and after the 

implementation of EEM1, EEM2, and EEM3 
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Figure 66: Average daily energy use for cooling and operation of other appliances for the 

baseline scenario and after the implementation of EEM1, EEM2, and EEM3. 

In addition to the energy savings derived from the different energy efficiency measures, we perform a 

technoeconomic assessment analysis to evaluate the economic viability of the measures. For this analysis 

we have chosen three indicators, the net present value (NPV), the simple payback period (PP) and the 

levelized cost of saved energy (LCSE).  

The NPV is calculated using the following formula: 

 
𝑁𝑃𝑉 = ∑ (

𝐶𝐹𝑖

(1 + 𝑑)𝑖
)

𝜏

𝑖=0

 (13) 

Where: 

• 𝜏 is the calculation period or the lifetime of the measure 

• 𝑑 is the discount rate  

• 𝐶𝐹𝑖 is the annual cash flow in year i; 𝐶𝐹𝑖 = 𝛥𝑐𝑜𝑠𝑡𝑒𝑛𝑒𝑟𝑔𝑦,𝑖 + 𝛥𝑐𝑜𝑠𝑡𝑜𝑚,𝑖 − 𝐼𝑖 , 

Where: 

• 𝛥𝑐𝑜𝑠𝑡𝑒𝑛𝑒𝑟𝑔𝑦,𝑖 is the energy cost savings in year i 

• 𝛥𝑐𝑜𝑠𝑡𝑜𝑚,𝑖 is the change of annual operation and maintenance cost in year i  

• 𝐼𝑖 is the investment cost in year i  

 

The payback period (PP) is calculated using the following formula: 

 
𝑃𝑃 =

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

𝐴𝑛𝑛𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑎𝑣𝑖𝑛𝑔𝑠
 (14) 

The LCSE is calculated using the following formula: 
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𝐿𝐶𝑆𝐸 =
𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝐶𝑎𝑠ℎ 𝐹𝑙𝑜𝑤

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑎𝑣𝑖𝑛𝑔𝑠
=

𝐼0 ∗ 𝐶𝑅𝐹 −  𝛥𝑐𝑜𝑠𝑡𝑒𝑛𝑒𝑟𝑔𝑦 − 𝛥𝑐𝑜𝑠𝑡𝑜𝑚

𝛥𝐸
=

−𝑁𝑃𝑉

∑ (
𝛥𝐸

(1 + 𝑑)𝑖)
𝜏
𝑖=0

 
(15) 

 

Where: 

• 𝛪0 is the initial investment 

• 𝛥𝑐𝑜𝑠𝑡𝑒𝑛𝑒𝑟𝑔𝑦 is the annual energy cost savings 

• 𝛥𝑐𝑜𝑠𝑡𝑜𝑚 is the change in annual operation and maintenance cost  

• 𝐶𝑅𝐹 is the cost recovery factor; 𝐶𝑅𝐹 =
𝑑∗(1+𝑑)𝜏

(1+𝑑)𝜏−1
 , 

Where 

• 𝜏 is the calculation period or the lifetime of the measure  

• 𝑑 is the discount rate  

• 𝛥𝐸 is the annual energy savings 

For the evaluation of the three alternative measures, we use two different discount rates, a 7% discount 

rate as used in the Greek long-term renovation strategy 20201, and a 4% discount rate as suggested by 

the Commissions Impact Assessment guidelines2.  

The results are presented in Table 15. 

Table 15: Technoeconomic analysis results for the three energy efficiency measures with 7% and 4% 

discount rates 

 
Lifetime 

(years) 

Investment 

cost (€) 

Net 

Present 

Value 

(Disc. Rate 

`7%) (€) 

Net 

Present 

Value 

(Disc. 

Rate 

4%) (€) 

Payback 

period 

(Years) 

Levelized 

cost of saved 

energy (Disc. 

Rate 7%) (€) 

Levelized 

cost of saved 

energy (Disc. 

Rate 4%)(€) 

EEM1: Building 

envelope 
30 51033 -62.59 1920.82 12.56 0.001 -0.032 

EEM2: Gas boiler 15 39104 -5,064.82 -5,319.73 >20 1.206 1.038 

EEM3: Heat pump 20 6700 -2,123.89 -829.62 18.45 0.065 0.020 

We observe that the NPV is negative, thus the investment is not cost-effective, for a discount rate of 7% 

for all three measures. For the refurbishment of the building envelope and for changing the oil boiler 

 

1 https://energy.ec.europa.eu/system/files/2021-08/el_2020_ltrs_en_version_0.pdf  
2 https://energy.ec.europa.eu/system/files/2020-07/fr_ltrs_2020_en_0.pdf  
3 The investment costs for the measures included in EEM1 have been derived from the Commission’s Comprehensive study of 

building energy renovation activities and the uptake of nearly zero-energy buildings in the EU 

https://op.europa.eu/en/publication-detail/-/publication/97d6a4ca-5847-11ea-8b81-01aa75ed71a1/language-en/format-

PDF/source-119528141  
4 The investment costs for EEM2 and EEM3 are derived from the Comparison study of heating costs from different technologies from the 

Laboratory of Steam Boilers & Thermal Plants, NTUA and the Thermal Processes Laboratory, NTUA 

https://energy.ec.europa.eu/system/files/2021-08/el_2020_ltrs_en_version_0.pdf
https://energy.ec.europa.eu/system/files/2020-07/fr_ltrs_2020_en_0.pdf
https://op.europa.eu/en/publication-detail/-/publication/97d6a4ca-5847-11ea-8b81-01aa75ed71a1/language-en/format-PDF/source-119528141
https://op.europa.eu/en/publication-detail/-/publication/97d6a4ca-5847-11ea-8b81-01aa75ed71a1/language-en/format-PDF/source-119528141
https://ypen.gov.gr/wp-content/uploads/2023/01/M%CE%B5%CE%BB%CE%AD%CF%84%CE%B7-%CE%BA%CF%8C%CF%83%CF%84%CE%BF%CF%85%CF%82-%CE%B8%CE%AD%CF%81%CE%BC%CE%B1%CE%BD%CF%83%CE%B7%CF%82-%CE%95%CE%9C%CE%A0-%CE%A7%CE%B5%CE%B9%CE%BC%CE%B5%CF%81%CE%B9%CE%BD%CE%AE-%CF%83%CE%B5%CE%B6%CF%8C%CE%BD-2022-2023-2%CE%B7-%CE%95%CE%BA%CE%B4%CE%BF%CF%83%CE%B7.pdf
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with heat pump the negative result is mostly explained due to the high initial investment costs required. 

On the other hand, when it comes to changing the oil boiler with natural gas boiler, our results suggest 

that the low energy savings and the increased costs of natural gas compared to oil affect greatly the 

investment. The corresponding results for the 4% discount rate indicate a positive NPV for the 

refurbishment of the building envelope and a negative NPV for EEM2 and EEM3. 

It is evident from our analysis that high investment costs often make energy efficiency interventions 

cost-inefficient especially when the renovation includes measures such as heating system replacement 

and envelope interventions. This highlights the need for public subsidies and also the need for new tools 

and mechanisms to mobilise private financing, in order to allow the uptake and implementation of all 

these proposed energy efficiency interventions in buildings. 

In Greece, the programme “Exoikonomo 20235” was running from June 2023 until September 2023 and 

is the continuation of the successful programmes “Exoikonomo autonomo”, “Energy Saving at Home II” 

and “Energy Saving at Home I”. The fund of the "Exoikonomo 2023" programme will contribute to the 

energy saving of at least 213 killotonnes of oil equivalent and the energy renovation of at least 105,000 

residencies by 2025. Special support is foreseen for energy poor and vulnerable households in the form 

of an increased rate of grants and a separate budget of 60 million €. The subsidy can cover up to 75% 

of the total investment for the renovation depending on the income of the individual or the family and 

the typology of the building (e.g., older buildings, or buildings with low energy performance based on 

their EPC indication are prioritised). While the lowest contribution is at the level of 40% for individuals 

or families belonging to the highest income category.  

In the following tables (Table 16 and Table 17) the results of the technoeconomic analysis taking into 

consideration the highest level of subsidation (75%) and the lowest level of subsidation (40%) are 

presented.  

 

Table 16: Technoeconomic analysis results taking into account 75% subsidisation of the investment cost  

 
Capital cost 

required 

after subsidy 

(75%) (€) 

Net Present 

Value (Disc. 

Rate `7%) 

(€) 

Net Present 

Value 

(Disc. Rate 

4%)(€) 

Payback 

period 

(Years) 

Levelized cost 

of saved 

energy (Disc. 

Rate 7%) (€) 

Levelized cost 

of saved 

energy (Disc. 

Rate 4%)(€) 

EEM1: Building 

envelop 
1275.75 3,764.66  5,748.07  3.14 -0.086  -0.095  

EEM2: Gas boiler 977.5 -2,132.32  -2,387.23  17.97 0.508  0.466  

EEM3: Heat pump 1675 2,901.11  4,195.38  4.61 -0.089  -0.100  

 

Table 17: Technoeconomic analysis results taking into account 40% subsidisation of the investment cost. 

 
Capital cost 

required 

after subsidy 

(40%) (€) 

Net Present 

Value (Disc. 

Rate `7%) 

(€) 

Net Present 

Value 

(Disc. Rate 

4%) (€) 

Payback 

period 

(Years) 

Levelized cost 

of saved 

energy (Disc. 

Rate 7%) (€) 

Levelized cost 

of saved 

energy (Disc. 

Rate 4%) (€) 

 
5 https://exoikonomo2023.gov.gr/to-programma  

https://exoikonomo2023.gov.gr/to-programma


 D3.2: ‘Second wave’ of DigiBUILD AI-based data-driven services for the built environment  

 

127 

EEM1: Building 

envelop 
3061.8 1,978.61  3,962.02  7.54 -0.045  -0.065  

EEM2: Gas boiler 2346 -3,500.82  -3,755.73  >20 0.834  0.733  

EEM3: Heat pump 4020 556.11  1,850.38  11 -0.017  -0.044  

As concluded from the results of the analysis for both of the subsidation cases the investment with own 

capital for EEM1 and EEM3 is cost-effective, verifying the importance of public subsidies. The only 

measure that is not cost-effective is EEM2 (the replacement of the oil heating system with a gas boiler).  

Considering our results these investments prove to be not viable due to the current high gas prices, 

making them less attractive also for consumers. However, building owners and/or users often consider 

only the initial/ capital investment needed from their side when it comes to financing renovation 

measures since they may have limited access to technoeconomic assessments or whole renovation plans 

for their buildings to facilitate their decision-making process. This highlights the need for the DigiBUILD 

services and specifically s3.4.1. 

IEECP pilot – Hague, Netherlands  

6.1.4.3 Pilot characteristics  

The second application of s.3.4.1 for the case of the IEECP pilot concerns an apartment located in 

Netherlands. The building specifications are displayed below. Again, in this case data related to the 

energy consumption of the apartment (e.g., data from an electricity bill) were shared with the modelling 

team to facilitate establishing the baseline consumption of the building/apartment and for calibration 

purposes.  

Table 18: Characteristics of the IEECP pilot in Netherlands. 

Pilot: IEECP - Netherlands Pilot 

Location and climate characteristics 

Country: Netherlands 

Region (e.g., town, municipality, etc.): Village 

Climate/ Climate Zone: Moderate maritime (or oceanic) climate 

Building Characteristics  

Type of building/ usage: House/ Office 

Year of Construction or Renovation: 1936 

Building size: 3 floors 

Total Floor area of the building   125 m2 

Total area of external walls of the buildings : 110 m2 

Total area of Wall1: 30 m2 

Total area of Wall2: 60 m2 

Total area of Wall3: 20 m2 
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Total Roof area of the building: 180 m2 

Windows system: 

Windows system 

Combination of Plastic and Wooden 

Framed, Double glass windows (10mm 

thick) 

Total windows area: 33.8 m2 

Total area of Window1: 3 m2 

Total area of Window2: 8 m2 

Total area of Window3: 5.2 m2 

Total area of Window4: 0.4 m2 

Total area of Window5: 2.4 m2 

Total area of Window6: 4 m2 

Total area of Window7: 6 m2 

Total area of Window8: 4.8 m2 

Building envelope features/ Construction features (U-values) 

Uwall: 1.5 W/m²/K 

Ufloor: 1.7 W/m²/K 

Ufloor: 1.6 W/m²/K 

Uwindow: 1.2 W/m²/K 

Building system 

Heating system: Gas boiler 

Nominal capacity: 8,5 - 35,7 kW 

Lighting equipment: 45 LED bulbs 

Lighting equipment capacity: 350 W 

Other Parameters  

Occupancy: 3 people 

Operating schedule: 24hrs 

The simulation model of the building in the Netherlands is presented below. 
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Figure 67: Simulation environment in Dymola showing the model of the IEECP pilot in 

Netherlands. 

6.1.4.4 Analysis and results   

After calibrating the model and deriving the baseline energy consumption of the apartment we analyse 

the effect of the implementation of different energy efficiency measures. After consultation with the 

building owner, these include: 

• EEM1: Refurbishment of external walls 

• EEM2: Replacement of double-glazed windows with triple-glazed 

• EEM3: Refurbishment of the roof 

• EEM4: Replacement of the gas boiler with a heat pump 

• EEM5: Total building envelope refurbishment  

The total annual energy consumption of the apartment for the baseline scenario as well as after the 

implementation of the measures are presented in the following graphs. In addition, the energy 

consumption is disaggregated to the thermal energy consumption and the energy used for cooling and 

operation of other appliances.  
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Figure 68: Total annual energy consumption for the baseline scenario and after the 

implementation of the energy efficiency measures. 
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Figure 69: Annual thermal energy consumption for the baseline scenario and after the 

implementation of the energy efficiency measures. 

 

Figure 70: Annual energy used for total cooling purposes and operation of other appliances for 

the baseline scenario and after the implementation of the energy efficiency measures. 

Furthermore, the following graphs present the average daily total, heating and cooling and other 

appliances energy consumption respectively. 
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Figure 71: Average daily energy consumption for the baseline scenario and after the 

implementation of the energy efficiency measures. 

 

Figure 72: Average thermal energy consumption for the baseline scenario and after the 

implementation of the energy efficiency measures. 
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Figure 73:Average cooling and appliances energy consumption for the baseline scenario and 

after the implementation of the energy efficiency measures. 

The results of the technoeconomic analysis are presented in the following table: 

Table 19: Technoeconomic analysis results for the three energy efficiency measures with 7% and 4% 
discount rate 

 
Lifetime 

(years) 

Investment 

cost6 (€) 

Net Present 

Value (Disc. 

Rate `7%) (€) 

Net 

Present 

Value 

(Disc. Rate 

4%) (€) 

Payback 

period 

(Years) 

Levelized cost 

of saved 

energy (Disc. 

Rate 7%) (€) 

Levelized 

cost of 

saved 

energy 

(Disc. Rate 

4%)(€) 

EEM1 30 3750 -1,265.5 -287.78  18 0.174  0.125 

EEM2 30 3380 -1,334 -529.00  20         0.189  0.136  

EEM3 30 3657 8800 13,702.98  3.65 0.034  0.024  

EEM4 20 6875 7,784 9,364.55  5.75 0.063  0.049  

EEM5 30 8874 -7210.8 13,540.20  6.80 0.064  0.046 

 

6 The investment costs for the measures included in Table X have been derived from the following study: 

https://www.sciencedirect.com/science/article/pii/S0306261917317816?via%3Dihub  
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We observe that the NPV is negative, thus the investment is not cost-effective, for the first two measures 

(refurbishment of external walls and replacement of windows) in both cases of 7% and 4% discount rate. 

On the other hand, when it comes to refurbishing the roof, replacing the gas boiler with heat pump or 

going for a total envelope renovation NPV values are positive in both cases, and we also notice very 

short payback periods.  

In Netherlands there are two Incentive schemes for energy savings in the rental housing sector: 

• The Energy Performance Incentive Scheme for the Rental Sector (STEP) enables landlords to 

improve the energy performance of their rental properties. 

• The Energy Savings Fund for the Rental Sector (FEH) offers low-interest loans for landlords to 

make their rental properties more energy-efficient. 

The ISDE is an investment subsidy with a one-off payment that runs until 2030. Applications can be made 

from 3 January to 31 December 2024. The amount of subsidy for which one can be eligible depends on 

type of intervention and the energy-savings potential and is generally about 20% of the investment 

amount.  

6.1.5 Next Steps 

In order to enter the full pilot operation phase at M21, the next steps should be taken into account for 

s.3.4.1: 

1. Apply the service on the remaining pilot building of IEECP and FOCCHI. 

2. Start developing the interface to collect the building owners/ users data in an automatic way.  

3. Test the interface system in the pilot sites.  

4. Setting up a standardized renovation roadmap that will be fed back to the users based on the 

feedback received from the applications. 

6.2 One-stop-shop energy efficiency hub (s3.4.2) 

6.2.1 Description of the Service 

The primary objective of the one-stop shop energy efficiency hub is to generate a framework designed 

to automate the generation of optimal building renovation roadmaps, complete with cost analyses. This 

aids in decision-making for optimal financing of building renovations. The framework takes into account 

not only energy and economic factors but also environmental and social considerations. The platform 

aims to enable users, through straightforward steps, to receive a list of energy efficiency actions. These 

actions are intended to enhance both the energy performance and the economic return of their 

buildings while also making them more beneficial from an environmental and social point of view. A 

prerequisite for utilising the tool's functionality is the possession of a correct and valid Building Energy 

Performance (BEP) model of the building in the .idf format, along with a corresponding .epw file 

containing local weather data. Additionally, knowledge of the cost of the actions to be examined through 

the application is required. 
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As detailed in the previous Deliverable D3.1, the service is divided into four fundamental pillars: data 

collection, iterative scenario simulation, evaluation, and ranking. Each of these pillars, or phases, will be 

analysed further. 

Data Collection 

The goal of this pillar is to gather the appropriate files from the user, analyse the baseline BEP file 

provided by the user, and collect pertinent information from it for subsequent use. Thus, in Figure 74, 

the data flow in this component is outlined. In this phase, the user submits their building's BEP file (.idf) 

along with a suitable weather file (.epw). These are collected and examined for their correctness and 

validity. Initially, the file is checked for its geometry and surfaces. The BEP file's ability to run with the 

simulation engine used (EnergyPlus), along with the provided weather data, is then verified. Once these 

files pass the checks, data related to the building's construction (constructions, materials, orientation, 

etc.) and its energy requirements are collected. The BEP file is then analysed using suitable Python scripts 

to collect data on the surface and construction of external walls, roofing, and windows. This will assist 

later in evaluating the cost of replacing these with more efficient constructions. Concurrently, the user 

is asked about the aspects of the building they wish to modify, presenting them with a catalogue of 

available actions and their estimated construction costs. These data are collected, thus completing the 

data collection phase. The next step is the iterative scenarios simulation. 

 

Figure 74: s3.4.2 - Data collection and validation 

Iterative simulation 

In this phase, various alternative Building Energy Performance (BEP) models are generated, based on the 

user's selections from the available energy efficiency actions. These models are essential for running 

simulations and gathering energy data of each alternative BEP model. Consequently, it is apparent that 

this methodology contemplates multiple distinct scenarios per building. Naturally, this list is subject to 

further research and expansion.  illustrates the workflow of the iterative scenario simulation.  
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Figure 75: s3.4.2 - Iterative simulation flow 

The initial step involves the collection of user preferences and the construction of different BEP models. 

These models are designed to encapsulate all feasible combinations of energy upgrades in the building. 

Once constructed, they are submitted to the simulation engine to execute the simulations. Upon the 

completion of the simulations, the building's energy requirements are collected, mirroring the baseline 

methodology. Specifically, the data collated includes the total energy demand for the simulation period, 

the energy demand for heating and cooling, the energy sources utilised for these purposes, and the 

PMV (Predicted Mean Vote) and PPD (Predicted Percentage of Dissatisfied) indices, which pertain to 

comfort levels during the simulation period. After the collection of this information, a second phase of 

calculations follows to determine the costs of meeting energy needs and the carbon dioxide emissions 

associated with them. This marks the completion of the iterative simulation phase, leading us to the 

evaluation phase to scrutinise the results. 

Evaluation 

At this stage, the evaluation of the Building Performance Indicators (BPIs), as termed in this service for 

ease of reference, is conducted. The Building Performance Indicators (BPIs) have been streamlined from 

what was presented in Deliverable D3.1. This revision aims to represent the value of each criterion more 

accurately and to eliminate any overlaps. Final BPIs are depicted in Table 20, categorised accordingly. 

Some indicators necessitate additional calculations. The methodologies for these calculation formulas, 

are presented below. 

Table 20: Building Performance Indicators to be evaluated. 

BPI ID Type Formula Units 

Total Energy 

Consumption 

annually 

BPI_1 energy ∑(𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑒𝑟 𝑠𝑜𝑢𝑟𝑐𝑒) J/y 

Heating/Cooling 

Total Energy 

Consumption 

annually 

BPI_2 energy 𝐸𝑛𝑒𝑟𝑔𝑦ℎ𝑒𝑎𝑡𝑖𝑛𝑔 + 𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑜𝑙𝑖𝑛𝑔 j/y 

Energy savings 

annually 
BPI_3 energy 𝐸𝑛𝑒𝑟𝑔𝑦𝑏𝑒𝑓𝑜𝑟𝑒 −  𝐸𝑛𝑒𝑟𝑔𝑦𝑎𝑓𝑡𝑒𝑟 J/y 
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Energy used from 

RES 
BPI_4 energy 

𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

 % 

Energy used from 

HC 
BPI_5 energy 

∑(𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑒𝑟 𝐻𝐶 𝑠𝑜𝑢𝑟𝑐𝑒)

∑(𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑒𝑟 𝑠𝑜𝑢𝑟𝑐𝑒)
 % 

Net Present Value 

BPI_6 economic 
∑

Net Cash Flow at Time t

(1+𝑟)𝑡
5
𝑡=1 , 

𝑤ℎ𝑒𝑟𝑒 𝑟 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑟𝑎𝑡𝑒 

€ 

Payback Period 
BPI_7 economic 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

𝐴𝑛𝑛𝑢𝑎𝑙 𝐶𝑎𝑠ℎ 𝑓𝑙𝑜𝑤 𝑓𝑟𝑜𝑚 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑎𝑣𝑖𝑛𝑔𝑠
 years 

Discounted Payback 

Period BPI_8 economic 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

=  ∑
Net Cash Flow at Time t

(1 + 𝑟)𝑡

5

𝑡=1

 
years 

Internal Rate of 

Return (IRR) 
BPI_9 economic 0 =  ∑

Net Cash Flow at Time t

(1 + 𝐼𝑅𝑅)𝑡
 % 

Cost of 

Effectiveness 
BPI_10 economic 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

𝐴𝑛𝑛𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑎𝑣𝑖𝑛𝑔𝑠
 €/J 

Energy source 

diversity 

BPI_11 social 

1

2𝑁2�̅�
∑ ∑|𝑦𝑖 − 𝑦𝑗|

𝑁

𝑗=1

𝑁

𝑖=1

 

𝑊ℎ𝑒𝑟𝑒: 

𝑛: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 

�̅�: the average proportion of total energy  

consumption per source 

𝑦𝑖 , 𝑦𝑗: the proportions of total energy  

consumption for sources 𝒊 and 𝒋, respectively 

0 to 1 

Predicted Mean 

Vote 
BPI_12  - 

-3 to 

+3 

Therman Comfort 

Satisfaction Rate 
BPI_13 social - % 

Mean UA Value 

BPI_14 social 

∑ 𝑈 − 𝑉𝑎𝑙𝑢𝑒 ×  𝐴𝑓𝑙𝑜𝑜𝑟

𝑇𝑜𝑡𝑎𝑙 𝐴𝑓𝑙𝑜𝑜𝑟

 

𝑤ℎ𝑒𝑟𝑒 𝐴 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎. 

W/°C 

Non-HC Energy 

Percentage 
BPI_15 environmental 

𝐸𝑛𝑒𝑟𝑔𝑦𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑛𝑒𝑟𝑔𝑦𝐻/𝐶

𝐸𝑛𝑒𝑟𝑔𝑦𝑡𝑜𝑡𝑎𝑙

 × 100% % 
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Renewable Energy 

Capacity 
BPI_16 environmental - J 

Average annual CO2 

emissions BPI_17 environmental 
∑ 𝑓𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 × 𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑒𝑟 𝑠𝑜𝑢𝑟𝑐𝑒 

𝑤ℎ𝑒𝑟𝑒 𝑓𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ∶  𝐶𝑂2 𝑒𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

tn 

Once all BPIs have been computed, the process culminates with the optimisation phase. 

Ranking 

This is the final phase where the optimal scenarios are generated through their evaluation based on the 

BPIs. To make this possible, a multi-criteria decision analysis system was devised to evaluate the different 

alternative scenarios. As is obvious, alternatives are the different configurations of possible interventions 

and criteria are the BPIs. The weighting of the criteria was done with the help of the pilot as it has experts 

in the field of energy management and utilisation. Bilateral significance relationships between the criteria 

were completed by the pilot energy experts and are shown in Table 31. Based on this table the weights 

for each criterion were calculated by utilizing the Analytical Hierarchy Processes method. Consequently, 

the weights of the criteria are shown in Table 32 and Table 33. 

The TOPSIS method was chosen for the evaluation of the alternatives for its computational efficiency, 

Comprehensive and Logical Approach. This method ranks the different alternatives for us. The top ten 

resulting from it are presented to the user as the best scenarios for energy upgrades in their building. 

The flow of ranking along with evaluation phase is presented in Figure 76. 

 

Figure 76: Evaluation and ranking flow. 

6.2.2 Novelty 

Numerous successful attempts have been made in the past to develop models and frameworks that 

utilise simulation data to identify optimal energy upgrade measures for buildings. Despite this, the 

concept is not widely adopted within the building industry. A significant reason for this is that most 

buildings lack up-to-date Building Information Models and BEP models. Nevertheless, in the current era 

of digital transformation in the building sector, a promising foundation appears to be emerging for the 

advancement of such methodologies. Furthermore, the strategy employed in DigiBUILD seeks to 

incorporate considerations beyond the traditional focus on energy and economics. This is achieved 

through the introduction of appropriate indicators capable of capturing the significance of factors such 

as comfort, energy poverty, and the diversity of energy sources. Consequently, DigiBUILD presents a 

renewed endeavour and an innovative approach to the computation of energy upgrades in buildings. 

6.2.3 Development Progress 

Regarding the progress of the service, the data collection component is partially complete. It efficiently 
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gathers essential data from users, validates this information, and acquires baseline simulation data. The 

most significant segment yet to be finalised pertains to the iterative simulation pillar. This phase is 

particularly challenging from a programming perspective due to its reliance on comprehensive 

modelling techniques, which has consequently protracted the overall implementation of the service. 

Specifically, the manipulation of baseline files and the generation of all possible simulations are ongoing 

tasks. Regarding the evaluation segment, as delineated in the service description, it is thoroughly 

developed. However, its integration with the iterative simulation component is pending. The 

fundamental alternative evaluation methodology, constituting the evaluation segment, has been 

meticulously constructed. This is poised to be amalgamated with the preceding elements, thereby 

completing the entire value chain. Ultimately, the Graphical User Interface (GUI) for the one-stop-shop 

is anticipated to amalgamate the iterative simulation, evaluation, and ranking segments. This will occur 

once the developing activities for the components are finalised, ensuring the complete integration of 

the service's full value chain. 

The source code can be found on GitHub: GitHub s3.4.2 

6.2.4 Application on DigiBUILD Pilots 

According to the Description of Action (DOA), the service is being developed for implementation in Pilot 

9 (NTUA), specifically for Use Case 31 (UC_31). Although the entire value chain of the tool has not yet 

been completed, and its completion is essential for the pilot's usability, the pilot has significantly 

contributed to its definition during the development phase. In particular, the pilot includes experts 

specialising in energy management and policy formulation. These experts have engaged in co-creation 

activities at various stages of the methodology development and data collection. Specifically, the 

technical developers of the service, in collaboration with the pilot's energy management experts, have 

jointly developed the criteria that will be used to calculate energy upgrades. Furthermore, individuals 

involved in the pilot have determined the significance of these criteria to ensure they accurately and 

optimally reflect the impact of each criterion based on its specific needs. Therefore, while the service has 

not yet been implemented in this pilot, it has been directly involved in shaping the specifications to meet 

its requirements and achieve its objectives. 

6.2.5 Next Steps 

The forthcoming stages in the service's development are primarily concerned with the integration of 

modelling techniques, which represent the most substantial portion of the workload. Following the 

completion of this process, it is imperative that the entire value chain of the methodology – 

encompassing data collection, iterative scenario simulation, evaluation, and optimisation – is thoroughly 

comprehended. Additionally, this methodology must undergo comprehensive testing. This testing, to 

be conducted by both the service developers and the Pilot, is crucial for ensuring the service's effective 

functioning in real-world conditions. This will be facilitated through the Graphical User Interface (GUI) 

which is, in parallel, under development. 

https://github.com/digibuild-technology-release/s3_4_2_NTUA
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7 Decision-making under uncertainty tools for 

efficient and climate resilient buildings 

This chapter delves into the increasingly important topic of building resilience in the context of climate 

change. It presents a comprehensive approach to assessing and enhancing the resilience of buildings 

against a variety of climate-related risks. 

The chapter introduces a novel service designed to evaluate the climate resilience of buildings. This 

service is critical in today’s context, where global climates are constantly changing, posing new 

challenges to the built environment. The approach outlined in this chapter aims to provide a clear 

understanding of a building's vulnerabilities to specific climate hazards and suggests measures to bolster 

its resilience. 

7.1 Efficient and climate resilient buildings (s3.5.1) 

7.1.1 Description of the Service 

As global climates undergo continuous evolution, the imperative to fortify built environments against 

environmental challenges is heightened. Therefore, it becomes imperative to thoroughly assess 

buildings’ resilience to climate-related risks and acquire the essential foundation for understanding its 

vulnerabilities to specific climate hazards, hence enabling the implementation of appropriate measures 

to enhance its resilience. The proposed service introduces a comprehensive framework able to assess 

and evaluate the climate resilience of buildings. The initial stage of the climate resilience assessment for 

a building involves preparing a climate vulnerability and risk assessment for the reference building. To 

achieve this, we identify related climate hazards and evaluate the building's exposure to each of the 

outlined hazards, both current and future, and assess the vulnerability of the building to the identified 

hazards. Subsequently, this information is utilised to assign appropriate weights to the technical features 

of the building, which are considered in the overall climate resilience assessment of the reference 

building. The following step involves identifying the characteristics of the building infrastructure of the 

reference building. These features can be categorised into the building's structural characteristics, energy 

systems, water management systems, sustainability practices, and crisis management systems (in the 

case of workplaces and large buildings). The objective is to ensure that non-expert personnel can easily 

complete all the above tasks and draw conclusions regarding the climate resilience of a building. To 

achieve this, thorough research is conducted on the building characteristics that need to be considered 

in calculating the climate resilience indicator. This is to ensure that the tool is user-friendly and accurate 

at the same time. 

7.1.2 Novelty 

Numerous studies have delved into the realm of building resilience, each with its unique focus on specific 

aspects and hazards. For instance, Hung et al. (30) have pioneered a methodology aimed at assessing 

building resilience within the context of metropolitan land use planning, albeit primarily at a broader 

urban scale rather than the individual building level. Similarly, Cere et al. (31) have contributed by 

qualitatively characterizing urban-scale building resilience through delphi-based expert consultations. 

However, their approach may not readily apply to individual building owners and entails reliance on 
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expert input.  

On a more specialised front, Himoto & Suzuki (32) have devised a computational model to measure fire-

resilience, although this method is confined exclusively to addressing fire-related risks. Lopez-Garcia et 

al. (33) have put forth diagnostic techniques for assessing heat resilience using temperature and CO2 

data, but their approach may not comprehensively cover all dimensions of resilience. Sun et al. (34) have 

conducted a case study focusing on thermal resilience and energy efficiency within buildings, but it 

might not encompass the full spectrum of resilience factors. Meanwhile, Menna et al. (35) have 

undertaken a study concentrating on methodologies for assessing seismic resilience, particularly geared 

toward earthquake hazards. 

Burroughs (36) has innovated by developing the ARMS tool to gauge building resilience from the 

building owner's perspective, albeit taking a broader approach that doesn't specifically address climate-

related hazards. Finally, Duarte et al. (37) have proposed a resilience classification system founded on 

five dimensions, facilitating the classification and comparison of building performance and vulnerability 

assessment.  

While these studies have made valuable contributions to the understanding of building resilience, they 

often concentrate on specific hazards or dimensions. Hence, there remains a pressing need for a more 

comprehensive approach to assess building resilience, particularly in light of the concerns stemming 

from the challenges posed by climate change. Here, we introduce a comprehensive framework able to 

assess and evaluate the climate resilience of buildings, with the aim to, on the one hand provide a 

detailed assessment of the buildings’ climate resilience, and, on the other hand support easy access to 

the broad audience. The analysis covers the main climate hazards and integrates weather data for 

exposure analysis. The proposed framework also introduces an innovative building climate resilience 

rating based on a detailed building climate resilience scoring system which supports diverse building 

typologies. The scoring is based on a structured and quantifiable assessment approach achieved by 

drawing from extensive research on building infrastructure to determine the appropriate weights in the 

assessment tool. The results provide a robust understanding of the environmental challenges faced by 

buildings and the framework’s adaptability is validated with application in two DigiBUILD pilot sites in 

Finland (Pilot 7 – FVH) and Greece (Pilot 9 – NTUA). In parallel, a web application is currently in 

development, aiming to improve the tool's user-friendliness and expand its accessibility, ensuring its 

utilisation by a diverse audience. 

7.1.3 Development Progress 

7.1.3.1 Climate exposure analysis 

The resilience of buildings to climate-related challenges is intricately tied to their exposure and 

vulnerability to severe weather events. An illustrative statement from the Intergovernmental Panel on 

Climate Change (IPCC) underscores the importance of embedding information on climate risks into the 

architectural design, construction, and retrofitting of housing.” These climate risks, which buildings must 

confront and withstand, encompass a wide range of direct and indirect threats. In this section, we will 

provide a general overview of the climate risks that buildings must address and cope with, along with 

an explanation of the methodology employed to utilise Numerical Weather Data for quantifying these 

risks on a scale. 
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7.1.3.1.1 Climate hazards 

In the European Union, substantial endeavours have been undertaken to meticulously delineate climate 

hazards for the purpose of providing stakeholders with comprehensive information. According to the 

EU Taxonomy Classification, climate hazards are categorised as chronic and acute, further sub-divided 

into temperature, wind, water, and soil mass-related phenomena, as illustrated in Table 21. This study 

concentrated on specific climate hazards, namely, heat waves, cold waves, heavy precipitation, storms, 

flooding, and drought. The selection of these hazards is based on their direct correlation with weather 

data, enabling the calculation of the building’s exposure intensity to these climate phenomena.  

1.1.1.1.1 Weather data and exposure analysis  

This subsection establishes the correlation between climate hazards and climate as well as non-climate 

data, elucidating how their analysis culminates in the quantification of climate hazard exposure. For the 

purpose of analysis, indicators were selected to assess exposure to climate hazards outlined in this 

section. The methodology employed involves establishing thresholds for the metrics associated with 

each climate hazard. This allows the quantification of exposure on a scale ranging from 0 to 5, where 0 

signifies negligible exposure and 5 denotes very high exposure to the specified hazard. 

Table 21: Classification of Climate Hazards. 
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 Heat waves: For heat wave hazard, the indicator utilised for assessing building locations is the 

heat index, also recognised as apparent temperature. The development of apparent 

temperature aimed to gauge thermal comfort rather than investigate human health Steadman 

(38). Nevertheless, it has gained popularity as an exposure metric in environmental health, 

particularly in its approximate ”heat index” form.  

The formula employed to calculate the heat index is as follows: 

  

  

(16) 

The mapping of the thresholds for the maximum values of the heat index observed in the weather data 

analysis of the last decade for the area where each reference building reference building is located is 

depicted in Table 22 , both with the qualitative exposure scale and the quantitative one. 

Table 22: Heat Waves exposure levels 

Risk Level No Risk Very Low Low Moderate High Very High 

Max HI <26.7 32.2 39.4 46.1 54.4 >54.4 

 

Cold waves: In the context of the cold wave climate hazard, the index employed for computing the 

exposure fraction of the reference building is the Wind Chill Index (WCI). This index, beyond considering 

ambient temperature, incorporates wind speed, acknowledging its impact on heat transfer. The formula 

for the WCI is as follows: 

  

  

(17) 

The mapping of the thresholds for the maximum values of the WCI observed in the weather data of the 

last decade for the area where the reference building is located is depicted in Table 23 both with the 

qualitative exposure scale and the quantitative one.  
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Table 23: Cold Waves exposure levels 

Risk Level No Risk Very Low Low Moderate High Very High 

Max WCI <10 4.4 -6.7 -17.8 28.9 >28.9 

 

Heavy Precipitation: Regarding the hazard of heavy precipitation, an analysis was conducted on the 

hourly rainfall amount (mm/h). The mapping of the thresholds for the maximum values of the rainfall 

observed of the last decade for the area where the reference building is located is depicted in Table 24. 

Table 24: Heavy Precipitation exposure levels 

Risk Level No Risk Very Low Low Moderate High Very High 

Max Rainfall (mm/h) <12.7 38.1 76.2 127 192 >192 

 

Heavy Storm: For the exposure analysis in storms, an evaluation of both the hourly rainfall amount (as 

already calculated in Table 24) and the wind speed (m/s) are considered. The categorisation in the 

different exposure levels is thus formulated by considering the site’s rating in both factors. The mapping 

of thresholds for the exposure assessment is depicted in Table 25. It should be noted at this juncture 

that both conditions must simultaneously be met to categorise the exposure of the building in the worst-

case category. 

Table 25: Storm exposure levels 

Risk Level No Risk Very Low Low Moderate High Very High 

Max Rainfall (mm/h) <12.7 38.1 76.2 127 192 >192 

Max Wind speed (m/s) <7 14 28 35 42 >42 

 

Flooding: In relation to the climate hazard of flooding, three key parameters were identified that 

predominantly influence exposure to this hazard. Apart from the evident factor of hourly rainfall amount 

(mm/h), consideration is given to the distance from bodies of water (sea, river, lake) and the elevation 

from sea level of the site where the reference building is situated. Consequently, the mapping of 

thresholds for the assessment of exposure in the flooding phenomenon is delineated in Table 26. 

Similarly, to storm analysis, all conditions must simultaneously be met to categorise the exposure of the 

building in the worst-case category. 

Table 26: Flooding exposure levels 

Risk Level No Risk Very Low Low Moderate High Very High 

Max Rainfall (mm/h) <12.7 38.1 76.2 127 192 >192 
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Distance (km) >5 2 1 0.5 0.1 <0.1 

Elevation (m) >300 100 50 30 10 <10 

 

Drought: The exposure of the building to the drought hazard was estimated using the Standardised 

Precipitation Index (SPI). This index, proposed by experts in 2009 at the Interregional Workshop on 

Indices and Early Warning Systems for Drought, was recommended for adoption by all National 

Meteorological and Hydrological Services (NMHSs) worldwide Zargar et al. (39). Its purpose is to 

characterise meteorological droughts, supplementing other existing drought indices utilised within their 

respective services. As per the official guide of the Standardised Precipitation Index, the thresholds for 

drought exposure classification are defined, as presented in Table 27.  

Table 27: Drought exposure levels 

Drought level near normal moderately dry severely dry extremely dry 

SPI values -0.99 to 0.99 -1.0 to -1.49 -1.5 to -1.99 -2 and less 

However, in order to uphold scaling within the range of 0 to 5, the thresholds for drought exposure 

classification listed in Table 28 were ultimately employed. 

Table 28: Drought exposure levels (0-5 range) 

Risk Level No Risk Very Low Low Moderate High Very High 

Min SPI >0 -0.5 -1 -1.5 -2 <-2 

In conclusion, this subsection has established the correlation between climate hazards and relevant data, 

providing a comprehensive understanding of the factors influencing the quantification of climate hazard 

exposure. Indicators, meticulously selected for their relevance to each climate hazard, facilitated the 

analysis, with thresholds set to enable a nuanced assessment. 

7.1.3.2 Building climate resilience 

Resilience to climate change can be defined as the ability of interconnected social, economic, and 

ecological systems to effectively manage and adapt to hazardous events, trends, or disturbances. This 

involves responding to and reorganizing in ways that ensure the preservation of their essential functions, 

identities, and structures. In the context of building infrastructure, the concept of resilient buildings 

encompasses a comprehensive approach. Resilient buildings should be strategically planned, 

meticulously designed, skilfully constructed, and efficiently operated in a manner that proactively 

anticipates, prepares for, and adapts to evolving climate conditions IPCC (40). Furthermore, resilient 

structures must have the capacity to withstand, respond to, and swiftly recover from disruptions resulting 

from these changing climate conditions. In this regard, buildings should play a significant role in 

mitigating or preventing the adverse impacts caused by the current climate situation or the expected 

challenges of the future EC (41). This pertains not only to safeguarding the building itself but also to 

ensuring the well-being of the individuals who inhabit these structures, preserving the surrounding 

natural environment, and protecting the valuable assets contained within these buildings FEMA (42). The 
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European Commission’s report EC (41). outlines best strategies to enhance building resilience and 

adaptation solutions for each priority hazard and underscores the importance of strategic design and 

infrastructure choices in bolstering building resilience to diverse climate hazards. In the followings we 

explore how specific design and infrastructure considerations can contribute to building resilience in the 

context of the identified climate hazards and define a set of criteria based on which the climate resilience 

of the building is assessed. The criteria correspond to specific building characteristics, which are classified 

into six categories, these are: the building envelope, the energy and water systems, adaptation solutions 

throughout the building’s infrastructure, sustainability practices and actions related to the buildings 

functional and environmental performance throughout its lifespan. 

7.1.3.2.1 Building climate resilient rating 

Building envelope: The role of building techniques and materials in enhancing the resilience of 

structures, either actively or passively, is underscored by the building envelope, while their influence on 

degradation levels is also significant Xiong et al. (43) In terms of the climate resilience they offer, various 

components of the building were examined, including wall construction material, interlayer insulation, 

external wall insulation, roof insulation, window-to-wall ratio, glazing systems, and shutters.  

For the materials and wall constructions techniques the assessment is based on their contribution to 

enhancing the climate resilience of the building. Considering the diverse and non-uniform regulatory 

framework and its direct influence in the construction techniques across different European countries 

Papadopoulos (44) in this paper, the is conducted on some of the indicative techno types used in Europe 

since 1960. The criterion by which the framework is established is the thermal transmittance of the 

construction (U-value); however, other factors, such as air and humidity tightness and sustainability 

aspects, are also being factored European Parliament, Council of the European Union (45). Older 

technologies, aside from having lower U-values, thereby rendering buildings vulnerable to phenomena 

such as heat waves, cold waves, and drought, are constructed from less sustainable materials that have 

undergone temporal degradation, impacting the tightness of the building, especially in regions with 

high rainfall, storms, and potential flooding United Nations Environment Programme (46). With these 

considerations in mind, the lower tier is occupied by single-layer reinforced masonry walls, followed by 

lightweight timber and gypsum board walls. These represent older techniques with very low thermal 

transmittance and limited resistance to water-related phenomena. In the subsequent tiers, basic wood 

framing and brick/concrete walls or similar options were explored, showing improved thermal resistance 

results in comparison to their predecessors. Moving to the upper tiers, we find reinforced concrete/steel 

framing with masonry/concrete block cladding cement and specialised structural insulated panels or 

similar engineered resilient systems. The latter techniques are regarded as the most modern, aligning 

with the most up-to-date regulatory frameworks in European countries, indicating increased levels of 

thermal transmittance and durability. 

Another component assessed for its contribution to the building envelope’s resilience against severe 

climatic phenomena is interlayer insulation. It involves the application of insulation between the studs 

of walls or roofs. Similar to walls, it introduces an additional level of thermal transmittance, aiding in the 

reduction of the likelihood of air leakage and the risk of water penetration during heavy precipitation 

and flooding IEA (47). Once again, the regulatory framework varies across different European countries 

and evolves over time Papadopoulos (44). Moreover, the methods of implementation can differ based 

on the chosen material, manufacturer, specification, and installer. The styles considered in this paper, 

ranked in order from those offering little to no resilience to those significantly enhancing building 

strength, include: missing interlayer insulation, an air gap between studs, fibreglass batt insulation 
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between studs, cellulose insulation between studs, open-cell spray foam insulation between studs, 

closed-cell spray foam insulation between studs, interior insulating sheathing, and aerogel insulation 

Arivumani et al. (48); Dong et al. (49). It is important to note that these techniques are indicative.  

External wall insulation is a major factor in fortifying buildings against extreme weather events. This form 

of insulation is applied externally to walls and roofs, bolstering the overall building envelope. Beyond its 

energy-efficiency benefits, it provides an added layer of defence against severe weather conditions Lee 

et al. (50)Its primary function is to enhance the masonry’s overall U-value, enabling the maintenance of 

indoor conditions in the face of prolonged heat waves or cold waves Berger et al. (51). As interlayer 

insulation, it also mitigates the risks of air leakage and water ingress Al-Homoud (52). The degree of 

reinforcement is contingent on various factors, including insulation type, installation quality, and layer 

thickness Ekici et al. (53). In this study, we examined and classified several indicative styles and materials 

of external insulation, assessing their resilience against climate-related hazards. Detailed ranking table 

can be found in the supplementary material, air leakage, water ingress and damage from extreme 

weather events.  

A roof without insulation will allow heat to escape in the winter and enter in the summer, making 

buildings uncomfortable, expensive to heat and cool and vulnerable to climate hazards. A poorly 

insulated roof or a standard insulated roof with asphalt shingles is only slightly better than a roof with 

no insulation. Asphalt shingles are a common roofing material, but they are not the most climate-

resilient option. Asphalt shingles can absorb heat from the sun, which can make your home hotter in the 

summer. They are also more susceptible to damage from high winds and hail. Metal roofs reflect 

sunlight, which can help to keep your buildings cooler in the summer. They are also more durable and 

less susceptible to damage from extreme weather events. A solar reflective or cool roof is a type of roof 

that is designed to reflect sunlight and reduce heat absorption. A green roof is a type of roof that is 

partially or completely covered with vegetation. Green roofs can help to insulate buildings, reduce 

stormwater runoff, and improve air quality. Hurricane-resistant roofing is a type of roofing that is 

designed to withstand high winds and hail. It is important to note that not all hurricane-resistant roofing 

is created equal, as is the case with earlier roofing styles.  

Another noteworthy building characteristic scrutinised for its climate resilience is the window-to-wall 

ratio. This factor significantly influences a building’s response to heatwaves and cold snaps by 

determining its capacity to harness or repel solar radiation, thereby influencing internal conditions. 

Research by Goia (54)has identified the optimal window-to-wall ratio for versatile performance across 

various climates to fall within the 35% to 45% range. Deviations from this range result in diminishing 

benefits in leveraging the local climate and solar exposure. When the ratio falls below the 35% to 25% 

range, and more significantly below the 25% to 15% range, a building’s ability to maintain optimal indoor 

temperatures, especially in colder climates, is compromised. Conversely, when the ratio exceeds the 45% 

to 55% range, and further exceeds the 55% to 65% range, the building’s ability to maintain optimal 

indoor temperatures diminishes, especially in warmer climates with extensive solar radiation exposure. 

Ratios outside of these mentioned ranges are generally regarded as impractical and do not confer 

climate resilience attributes to the building.  

The final characteristic, though not intrinsically part of the building envelope, holds an indirect yet 

significant connection. It pertains to the presence, or absence, as well as the type of shutters adorning 

the building’s openings. These shutters wield immense importance in bolstering the building’s resilience 

against the array of climate hazards outlined in this manuscript. During heatwaves and in the context of 

xeriscaping, they serve as effective shading mechanisms, effectively preserving the internal temperature 
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of structures Alawadhi (55). In scenarios involving flooding, heavy precipitation, and storms, shutters 

assume a dual role, acting as an additional layer of waterproofing and as a means of redirecting water 

away from the building’s apertures Vutukuru et al. (56). Particularly in regions frequently subjected to 

severe storms, specialised shutters are deployed to enhance overall resilience. Consequently, the 

hierarchy, ranging from the least resilient to the most, spans from temporary plywood panels or 

cardboard to accordion-style shutters, roll-down or roll-up shutters, storm panels (metal or 

polycarbonate), Bahama shutters, and impact-resistant windows and doors. 

Energy Systems: Energy systems and services play a key role in enhancing building resilience against a 

range of climate related hazards. In this context, we propose a rating approach for evaluating the 

resilience of buildings based on a set of energy systems, namely buildings cooling equipment, heating 

systems, ventilation systems and the use of energy efficient and smart appliances.  

The assessment of cooling strategies’ resilience is based on the analysis outlined in Zhang et al. (57). 

This study undertakes an in-depth examination of the performance of state-of-the-art cooling strategies, 

with a particular focus on their effectiveness during heatwaves and power outages. The resilient 

characteristics of the examined cooling strategies are summarised across four criteria – absorptive 

capacity, adaptive capacity, restorative capacity and recovery speed. Furthermore, aside from resilience 

capabilities during extreme events, the suitability of the cooling strategies in terms of climate zone and 

technology readiness level is also assessed. To gain a more comprehensive insight into the characteristics 

of each cooling system, we have drawn upon information from the U.S. Department of Energy (58) 

Results are summarised below, while the resulting scoring is presented in the supplementary material. 

Compression refrigeration, relying on vapor compression technology, demonstrates high adaptive 

capacity as it can retain sufficient cooling capacity even during heatwaves. However, it’s not very robust 

to power outages, and integrating it with local electricity production or energy storage can enhance its 

resilience. Absorption refrigeration, including desiccant cooling, offers energy-efficient and eco-friendly 

cooling, making it resilient during heatwaves if backed by alternative heat sources. Ground source 

cooling, benefiting from stable ground temperatures, exhibits high resilience to heatwaves. Still, its 

cooling capacity may be affected by climate change, and the recovery speed depends on environmental 

conditions. Sky radiative cooling, while renewable and resilient to blackouts, relies on favourable climate 

conditions and material properties. Finally, high-temperature cooling systems like radiant cooling show 

high adaptability and resilience under heatwaves and power outages, particularly when properly 

designed and controlled. These cooling strategies vary in their suitability depending on climate, building 

type, and specific needs, underscoring the importance of thoughtful planning and system selection for 

optimal performance and resilience. Ventilative cooling harnesses the potential of outdoor air for cooling 

and can encompass both natural and mechanical methods. While ventilative cooling systems’ 

effectiveness depends on factors like ventilation type, building characteristics, and local climate, well-

designed natural ventilation can offer substantial relief during heatwaves. Adiabatic/evaporative cooling 

offers an alternative cooling approach based on the adiabatic process of reducing air temperature 

through water evaporation. Climate change impacts reveal that evaporative cooling, exhibits more 

resilience compared to ventilative cooling.  

Insights on the assessment of different heating technologies are retrieved by the papers of Vakiloroaya 

et al. (59) and Bac et al. (60). For residential usage, the U.S. Department of Energy website was also 

advised. The heating systems reviewed are gravity air furnaces, portable or plug-in space heaters, hot 

water baseboard heater systems, electric resistance, hot water baseboard heater systems, in-floor 

radiant, traditional boilers and radiator systems, heat pump, forced air distribution systems, furnace and 
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hybrid heating home systems (heat pump systems and power of gas furnace). Gravity air furnaces, which 

rely on natural convection, are robust but often less energy efficient. Portable or plug-in space heaters 

offer quick, localised heating but are not suitable for large surfaces. Hot water baseboard heater systems 

are effective, distributing heat evenly through radiators or baseboards, but again their capacity is limited. 

Electric resistance systems are easy to install but can be costly to operate. In-floor radiant heating 

provides a comfortable, energy efficient solution. Traditional boilers and radiator systems offer reliable, 

widespread warmth, but they can be less efficient. Heat pumps are energy-efficient options that work 

well in moderate climates. Forced air distribution systems and furnaces are common choices for quick 

heating, while hybrid heating systems, combining a heat pump with a gas furnace, offer a balance 

between efficiency and power U.S. Department of Energy (DOE) (58). It is important to note that the 

site’s climatic conditions, expected thermal comfort, costs, the availability of energy sources and the 

application of the building are key factors that affect the performance and scoring of each heating 

technology Vakiloroaya et al. (61). Also, ergonomic, environmental, reliability, technical, and economical 

aspects should be considered Bac et al. (62). 

For ventilation systems, the scoring is based on the articles of Ahmed et al. (63) and Zaniboni & Albatici 

(64). Ahmed et al. (63) focus on natural ventilation and examine the capacity of different natural 

ventilation strategies to deliver heatwave resilience and sufficient thermal comfort and maintain high 

indoor air quality within warm climatic conditions. The study of Zaniboni & Albatici (64) expands the 

results of Ahmed et al. (63) and offers a systematic review to compare both natural and mechanical 

ventilation systems under a sustainable design perspective. Among the various natural ventilation 

techniques, single sided and cross ventilation leverage prevailing wind patterns to cool indoor spaces, 

but their effectiveness can be limited by wind availability. Windcatchers, architectural structures 

designed to capture and direct breezes into buildings, are effective in harnessing wind for cooling, 

particularly in arid regions. Solar chimneys, on the other hand, exploit solar-induced buoyancy to create 

airflow, making them reliable in sunny climates. Natural ventilation with evaporative cooling is especially 

effective in extremely hot environments, utilizing water evaporation to reduce indoor temperatures. 

While air handling units represent mechanical ventilation, they are energy-intensive and often less 

sustainable. Heat recovery ventilation strikes a balance by recovering heat from exhaust air, enhancing 

energy efficiency. Hybrid or mixed-mode ventilation systems combine the strengths of natural and 

mechanical ventilation, adapting to changing conditions for optimal comfort and air quality, offering a 

comprehensive suite of solutions for warm-climate buildings. Yet, it is important to highlight that 

selecting the best ventilation solution must take into account the context, type, and condition of energy 

efficient buildings.  

Last, we recognise the resilience benefits of the strategic deployment of energy efficiency and automated 

building monitoring and management systems Frankoni et al. (65), and evaluate the use of energy 

efficient and smart appliances. We propose a rating comprising of 11 evaluation levels. The initial level 

corresponds to the absence of energy efficient or smart appliances, while the subsequent levels 

represent an incremental increase of 10% in the adoption of such appliances relative to the total number 

of appliances within the buildings. 

Adaptation solutions on systems and services: The list below comprises a compilation of potential 

solutions for adapting buildings to the priority hazards outlined in Section 1.1.1.1.1. The alignment or 

interaction between each adaptation solution and the associated hazards is determined using the 

methodology presented in the EC report (41). Most of these solutions are assessed using a two-tiered 

approach, which corresponds to whether they are present or not in the examined building. However, the 
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evaluation of the installation of storm protection devices utilises a three-tiered approach, assigning 

varying scores to different percentages of critical building devices with installed protection against 

storms. 

1. Disconnecting surface water from sewage system: The separation of surface water and sewage 

systems is essential for flood resilience, as flooding has the potential to harm a building’s 

infrastructure services in case overflow or backflow water infiltrates the building through sewage 

pipes EC (41). Ensuring the separation of these systems minimises the potential for sewage 

overflow during storms and flooding, safeguarding public health Houghton & Castillo-Salgado 

(66). 

2. Placement of electrical and mechanical systems above flood level: The report of Low13 

underscores the importance of elevating critical building components such as electrical and 

mechanical systems above flood levels. This strategic placement offers robust resistance to a 

spectrum of hazards, including, apart from floods, heavy precipitation, and storms. By 

safeguarding these vital systems ensures the continuity of building operations but also yields 

long-term cost savings by mitigating potential damage and maintenance expenses.  

3. Dimensioning drainage networks to future runoff projections: Designing drainage networks to 

accommodate future runoff projections is vital for resilience against increasing precipitation and 

storm events. Research suggests that incorporating climate projections into drainage system 

design can prevent urban flooding Arnbjerg-Nielsen et al. (67). Proper dimensioning ensures 

efficient water management and minimises flood risks.  

4. Placement of sinks/toilets at a minimum height above flood level: In line with the floodplain 

hazard management regulations in Montana (68), plumping systems such as toilets, stools, sinks, 

urinals, vaults, and drains must be placed at a minimum height above flood levels to reduce 

water damage and contamination during flooding. This also ensures essential sanitary facilities 

remain functional in emergency situations.  

5. Water-efficient fixtures and fittings: Indoor water efficiency, installation of water-efficient 

fixtures and fittings, contributes to building resilience during drought and water scarcity 

episodes. Fixtures like delayed inlet valves, flow restrictors and low-flush toilets are examples of 

technologies that not only reduce the environmental impact but also ensure a reliable water 

supply during dry periods. It is important to note that these solutions require regular checking 

and monitoring for potential leakages EC (69).  

6. Greywater recycling: Greywater recycling systems enhance buildings’ resilience by conserving 

freshwater resources, promoting water sustainability, and reducing the dependency on central 

- municipal water supplies. Being effective against water scarcity and supply disruptions, such 

solutions thereby contribute on mitigating drought-related challenges Gikas & Tchobanoglous 

(70). 

7. Onside water sources – water storage: Water storage solutions provide a secure and readily 

available water source, particularly in regions prone to droughts and water shortages. These 

solutions, which may include rainwater tanks for greywater provision or watering plants during 

dry periods, not only offer a reliable local water source but also support conservation efforts. 

Local governments and municipalities play a critical role in this context by enforcing the 

installation of water retention systems in new buildings, which should be designed to withstand 

longer flood return periods, ensuring a proactive response to extreme weather events EC (69). 
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Such onsite water sources, like storage tanks or wells, address both high-demand periods and 

the preservation of water resources, thus effectively guaranteeing a continuous water supply 

even during times of scarcity. Water storage solutions thus play a crucial role in building 

resilience, reinforcing water security, and adapting to changing rainfall patterns.  

8. Burial of distribution lines: Burial of distribution lines reduces vulnerability to power outages, 

enhancing resilience in the face of high winds or storms EC (69). 

9. Installation of backup generators: Similar to the burial of distribution lines, the installation of 

backup generators enables building to continue operating in case of grid failures and electrical 

disruptions caused by high winds and storm events EC (69).  

10. Storm protection devices: Thunderstorms and lightning strikes, in addition to causing a power 

surge, can also cause damage to electronic devices. Storm protection devices enhance building 

resilience by safeguarding against extreme weather, reducing damage and ensuring occupant 

safety. As mentioned in the beginning of this section, the scoring related to the installation of 

storm protection devices utilises a three-tiered system, assigning different scores based on the 

percentages of critical building devices with installed protection against storms. 

Sustainability practices: Sustainable Drainage Systems (SuDS) are natural solutions designed to retain 

a specific percentage of rainfall, effectively accommodating water for short durations and mitigating 

heavy precipitation events. There are a variety of different SuDS options, each serving different purposes 

and their development is dependent on the different locations or typical rainfall landing area. Under the 

2019 version of the UK National Planning Policy Framework Department for Levelling Up & Communities 

(71), SuDS form one of five key considerations to the provision of development, when considering how 

to manage flood risk. Also, the use of SuDS as a central tool to reduce flooding was outlined in the Pitt 

Review (72). Depending on their design, SuDS can enhance biodiversity and reduce the risk of sewage 

overflow and associated health hazards, and vegetation, as part of SuDs, contributes to heat reduction. 

However, they require regular and potentially costly maintenance. The types of SuDS that are examined 

here are: permeable surfaces and filter drains (gravelled area, solid pavins blocks, porous paviors), 

infiltration devices (soakaways, infiltration trenches and basins), filter strips and swales, basins and ponds 

(constructed wetlands, balancing ponds, detention basins, retention ponds) and living roofs. The 

hierarchy of the different SuDS types, as detailed in the supplementary material, is based on a 

sustainability scale and incorporates associated amenity and environmental benefits as in Ambiental 

(73). 

Water systems: In examining water systems, two critical indicators for a comprehensive life cycle 

evaluation were assessed. Firstly, Anti-return valves for toilets and sinks/sewage pumps are scrutinised 

for presence or absence, addressing contamination risks. Secondly, the evaluation includes Rainwater 

tanks, evaluating their integration or exclusion for sustainable water management. This systematic 

approach ensures a thorough understanding of water system resilience and sustainability, aligning with 

principles established in building assessments. 

Site & Location: In addition to the building itself, the development and construction of the broader 

area in which it is situated and the available infrastructure to address extreme weather conditions are of 

critical importance for the building’s resilience. Therefore, two factors related to the site sustainability of 

the building and the surrounding area were incorporated into this research: land use and zoning, and 

utilities and infrastructure to address severe climate events. Land use and zoning consider urban 

development and land-use planning as part of climate hazard mitigation efforts Burby et al. (74). The 
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following criterion was divided into five levels, listed below from the one that contributes least to the 

most resilient building location:  

1. Urban sprawl with limited green spaces  

2. Mixed-use zoning with green corridors  

3. Smart growth and compact development  

4. Mixed-use zoning with planned green infrastructure  

5. Development with climate-adaptive zoning  

In terms of utilities and infrastructure, this pertains to the availability of emergency services and plans, 

hospitals, and evacuation plans for the area. These factors collectively play a crucial role in a dynamic 

climate scenario to ensure that residents receive immediate assistance, have effective evacuation plans 

in place, and receive proper care during potential climate crises et al. Lewis & Aghababian (75). Therefore, 

the five defined levels, from the least to the most resilient, are as follows:  

1. Limited or underfunded emergency services  

2. Basic emergency services and hospital facilities  

3. Well-equipped hospitals and trained emergency personnel  

4. Advanced healthcare facilities and comprehensive emergency plans  

5. Integrated emergency services, hospitals, and evacuation routes. 

7.1.3.3 Building Climate Resilience Scoring System 

Following the definition of building’s exposure to the considered climate hazards and determining the 

various levels of each direct and indirect building element, and calibrating their resilience to specific 

hazards, the subsequent phase involves devising a scoring system. This system aims to encapsulate both 

the overall climate resilience of the building and the individual resilience of its diverse systems, as well 

as its vulnerability to the considered climate hazards. This section will elucidate the methodology of the 

developed scoring system and its utilisation of the climate exposure analysis and resilience ratings for 

each building component. These elements are instrumental in calculating the appropriate weights and, 

ultimately, deriving the building’s final resilience score. 

7.1.3.3.1 Weight Calculation 

To calculate the weights of each climate hazard, the first step involves defining a table that associates 

each climate hazard with a value represented as 𝑗.  

Let 𝑒𝑗 denote the result of the exposure analysis, as derived from the methodology detailed in 1.1.1.1.1, 

for each hazard. Subsequently, these results are normalised using the equation provided in (18). 

 
(18) 

At this stage, the injection of external importance to each hazard, tailored to the assessor’s requirements, 

becomes feasible. Thus, 𝑖𝑗  ’ is defined for each climate hazard ’𝑗’ and must adhere to (19). 
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(19) 

Therefore, the non-normalised intermediate weights, 𝑤𝑗 , for each climate hazard 𝑗 are computed using 

the equation (20). 

 (20) 

Finally, the weights are normalised using the equation (21). 

 
(21) 
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Table 29: Building Categories and components indices. 

 Envelope (1) Energy Systems 

(2) 

Resilience (3) Sustainability 

Practices (4) 

Water Systems 

(5) 

Site & Location (6) 

1 Walls Cooling 

Equipment 

Connection between surface 

water & sewage 

Sustainable urban 

drainage systems 

Anti-return 

valves 

Land use and zoning 

2 In. insulation Heating 

Equipment 

Placement of electrical & 

mechanical systems 

 Rainwater tanks Emergency services, hospitals, 

and evacuation route setups 

3 Roof Insulation Ventilation Drainage network 

dimensioning 

   

4 Window/ Wall 

ratio 

EE appliances Placement of toilets & sinks    

5 Glazing system Smart appliances Water efficient fixtures and 

fittings 

   

6 Ex. Insulation  Greywater recycling    

7 Shutters  Water storage    

8   Burial of distribution lines    

9   Installation of backup 

generators 

   

10   Storm protection devices    
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7.1.3.3.2 Climate Resilience Score Calculation 

The calculation of the climate resilience score of the building is based on the current level of the different 

components of the building, as defined in 7.1.3.2.1. For easier indexing in the equations that follow, 

Table 29 is defined which maps the different components of the different categories of the building to 

𝑦 and 𝑧 indices respectively. For easier indexing in the equations that follow, in Table 29 the different 

building components (𝑦) are mapped to the corresponding category (𝑧).  

Let 𝐶𝑧,𝑦,𝑗 be the resilience score achieved by the reference building for component 𝑦 of category 𝑧 against 

hazard j. Each score 𝐶𝑧,𝑦,𝑗 is normalised by the maximum resilience score that the reference building 

achieves among all components y of category 𝑧 against hazard 𝑗. 

 
(22) 

By summing up the normalised values of the score in each component y of each category 𝑧 for each 

hazard j as, the overall climate resilience score is generated in a scale from 0 to 1. 

 
(23) 

Then, the normalised weights calculated in (21) are incorporated through (24) to account for the 

intensity of the building’s exposure to the considered climate hazards. 

 (24) 

Finally, by summing the resilience score for each climate hazard 𝑗, the total climate resilience score of 

the reference building on a scale of 0 to 1 is obtained, which is ultimately multiplied by 100 to yield the 

percentage resilience score of the reference building against the optimal scenario. 

 
(25) 

7.1.3.4 Development of Web Application 

Currently a web application has been developed for the pilots, where they can assess their buildings and 

compare them afterwards. The application features a user-friendly interface where the user can enter 

information about multiple buildings and then proceed with the assessment. The methodology 

mentioned has been applied in the app and the user can answer a questionnaire to determine and 

weight the climate hazards that affect each building, and then, after choosing the appropriate 

information for each building category, the assessments results can be seen. The web application can 

be used for all pilots without the need for custom modifications and is currently in the stage of being 

tested and fine-tuned. 

The source code can be found on GitHub: GitHub s3.5.1 

7.1.4 Application on DigiBUILD Pilots 

 Pilot 7 (FVH): The climate of Finland exhibits characteristics of both maritime and continental 

climates, depending on the direction of air flow. Despite its northern location, the average 

https://github.com/digibuild-technology-release/s3_5_1_NTUA
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temperature in Finland is several degrees higher than that of most other regions at similar 

latitudes. The Finnish climate is characterised by irregular precipitation, and it often experiences 

swift changes in weather conditions World Bank (76). Additionally, Finland is expected to witness 

an increase in both humidity and temperature, with the most significant warming occurring 

during the winter months. Winters are projected to become more humid, overcast, and with 

reduced snowfall, as highlighted in the study by Ruosteenoja et al. (77). The rise in sea level, 

estimated to be 29cm in the Gulf of Finland, is partially compensated by the residual land mass 

uplifting still following the loss of ice cover from the last ice age Johansson et al. (78). The main 

climate-related hazards in Finland are storms, floods and rapid flooding in or near the 

population centers Pilli-Sihvola et al. (79). The finish pilot takes place in a large office building, 

used and operated by the City of Helsinki. The City of Helsinki is actively focusing on the 

enhancement of data-driven management for its portfolio of city-owned buildings. This 

particular building was finalised in 2020, covering an area of 35,261m2 across seven floors and 

a basement and can accommodate approximately 2,000 people. The building is part of district 

heating and district cooling networks. These networks are currently powered by coal, but there 

are plans to transition to gas and biomass as alternative fuel sources. 

 Pilot 9 (NTUA): To further broaden the analysis, the second case study is conducted in Greece, 

a country situated in Southeast Europe. Greece exhibits a diverse climate owing to its unique 

geographical location and varied topography, resulting in distinct climatic zones within relatively 

short distances Angra & Sapountzaki (80). Climate hazards in Greece are primarily influenced by 

its Mediterranean climate, characterised by mild and wet winters in the southern lowland and 

island regions, contrasted with cold winters with heavy snowfalls in the mountainous areas in 

the central and northern regions, alongside hot and dry summers World Bank (76). These climate 

related hazards include heatwaves, droughts, wildfires and occasional winter storms and 

flooding. Our methodology is implemented in a ground floor office building of 150 m2 located 

on the campus of National Technical University of Athens. 

7.1.4.1 Exposure and Weight Results 

According to the framework outlined in 7.1.3.1, the exposure of the considered buildings, along with the 

resulting weights derived from equations (18), (19) and (21)(19), are presented in Table 30. It is evident 

from these tables that the exposure of each site to climate hazards is accurately depicted. On one hand, 

a site located in a Nordic country, Helsinki, Finland, is characterised by intensely cold winters with normal 

humidity levels, moderate rainfall, and limited storm events. On the other hand, Athens, Greece, 

experiences hot and dry summers, thereby increasing exposure to drought phenomena. However, its 

winters are milder. Additionally, occasional storms and high rainfall are observed, elevating the risk of 

flooding. The meteorological data for both pilot cases were sourced from the open-access repository 

Weather2023 (81).  

Table 30: Exposure and Weight Results for Helsinki and Athens pilot sites. 

 Heat waves Cold Waves 
Heavy 

Precipitation 
Storms Flooding Drought 

Helsinki 
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Exposure 1 4 3 2 2 1 

Weight 0.08 0.31 0.23 0.15 0.15 0.08 

Athens 

Exposure 4 2 2 1 3 2 

Weight 0.29 0.14 0.14 0.07 0.21 0.14 

 

7.1.4.2 Climate Resilience Score Results 

The criteria outlined in 10 and 11 have been fulfilled for both buildings. Detailed tables for each building 

are available in the supplementary material. In Figure 77(a), the total score attained by each building 

within scores. the climate resilience scoring framework is presented. It is evident that the building located 

in Finland demonstrates superior reinforcement against the severe weather events to which it is exposed, 

compared to the building situated in Greece. Shifting focus to Figure 77(b), the discernible difference is 

primarily observed in the energy systems and building envelope components. This discrepancy can be 

readily explained by the Finnish building being a more modern construction than its Greek counterpart. 

By examining Figure 77, insights into the resilience of the buildings against their respective hazards are 

obtained. Specifically, in 1a, it is observed that the building in Finland achieves a comparable resilience 

score against all climate hazards, nearing 50%, and notably excels in drought, heavy precipitation, and 

cold waves, where the resilience score approaches 60%. Conversely, the Greek pilot case demonstrates 

good resilience against flood, drought, and heavy precipitation, achieving a score close to 50%. However, 

it appears to lag in resilience against storms, cold waves, and heat waves, where the resilience score is 

just above 30%. Lastly, Figure 76a, the weighted resilience of each building reference to each hazard 

contributes to the overall score. By aggregating the percentages for each hazard, the total score is 

obtained, as described by the equation in (25). 
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Figure 77: Comparison of climate resilience scores 

7.1.4.1 Web Application 

As already mentioned, the web application can be used for both pilots without any further modifications. 

The first version of the application is complete and is currently being tested by the pilots. In the following 

figures the interface is presented with an NTUA building as an example.  

• Figure 78: The main page of the application, with which the user is greeted. The user can add a 

new building or click on any previously added ones to review them or update them. The user 

can also view the overall score of the assessment for each building and compare them. 

• Figure 79: A popup where the user can add the necessary information to create a new building. 

• Figure 80: The information entered for a building. 

• Figure 81: A portion for the climate hazards questionnaire, that will be used to calculate the 

weight for each hazard. 

• Figure 82: The results presented for the climate exposure assessment. The user can see what 

hazards are more likely to inflict the building. 

• Figure 83: A portion for the building characteristics selection. The user needs to select the 

characteristics for the building for each category, so that the assessment can proceed. 

• Figure 84: The results of the assessment for each category and per climate hazard. The results 

are shown weighted and non-weighted. 
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Figure 78: Dashboard of the application 

 

 

Figure 79: Add new building pop-up 
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Figure 80: Basic information of selected building 

 

 

Figure 81: Part of the climate hazards questionnaire 
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Figure 82: Results of exposure analysis for the building 

 

 

Figure 83: Part of the building characteristics selection 
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Figure 84: Building assessment final results 

 

7.1.5 Next Steps 

The proposed tool builds upon three key elements i) the examination and evaluation of essential 

structural and infrastructural building elements, ii) the comprehensive assessment of the building’s 

capacity to withstand climate-related hazards, ii) the contribution to the improvement of the building’s 

overall climate resilience.  

Extending prior research, the primary aim of the proposed tool is to simplify building assessment, making 

it accessible to individuals without specialised technical knowledge. Additionally, it covers all the main 

climate hazards and places a strong emphasis on precision. This is achieved by drawing from extensive 

research on building infrastructure to determine the appropriate weights in the assessment tool. As next 

step, the goal is to create a user-friendly and accurate tool that can be used by a broad audience. 

Towards that scope, there is an ongoing development of a web application designed to enhance the 

user-friendliness of this tool and broaden its accessibility, making it available to anyone interested in its 

utilisation. 

In parallel, among the proposed next steps to enhance the tools precision and efficacy in the evaluation 

of a building's resilience to climate hazards, is the fine-tuning of the assessment tool's weights. At the 

same time, it is essential to pursue new information regarding building structures that may wield 

significant influence over a building's vulnerability to climate-related threats. Notably, the future 

incorporation of established building evaluation methodologies into the existing framework, such as the 

Energy Performance Certificate (EPC), the Smart Readiness Indicator (SRI), and the Post Occupancy 

Evaluation (POE), holds particular significance. By continually enriching the tool with fresh information 

and insights, the aspiration is to provide a more comprehensive and robust resource for assessing 

climate resilience in the built environment. 
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8 Conclusions and Next Steps 

As we conclude our thorough reporting of the 'Second wave' of DigiBUILD AI-based data-driven services, 

it is crucial to consider the significant advancements in integrating advanced AI into the built 

environment sector. This journey, outlined in the preceding sections, marks a considerable advancement 

in utilising data-driven technologies to enhance energy efficiency, building management, and occupant 

well-being, while in parallel addressing climate resilience. However, there were also cases where services 

were ahead of some others in terms of development. Nevertheless, there have been instances where 

certain services have surpassed others in deployment. This underscores the clear significance of 

immediate availability and enhanced data quality. Simultaneously, it highlights the pressing need for 

modernisation and improvement of the built environment.  

Nevertheless, all these efforts contribute towards realising the primary objectives outlined in the Grant 

Agreement. These include delivering at least 20 novel pre-trained machine learning and deep learning 

models for buildings. Additionally, it is anticipated that the degree of uncertainty associated with the 

monitored and existing data will be reduced to below 10%. Furthermore, it aims to ensure comfort within 

the Predicted Mean Vote (PMV) range of -0.5 to 0.5 during the occupancy period of the buildings. 

This report also places significant emphasis on the identification of novel and innovative aspects of 

services where they exist. In this domain, which is currently evolving, certain services have been identified 

that either exhibit a robust and innovative methodology or present a fresh, novel approach to the well-

established issues of energy management in buildings. However, it is noteworthy that some services 

demonstrate less pronounced innovation. 

In conclusion, the following objectives have been established for the future development and successful 

forthcoming full Pilot operation of DigiBUILD: 

• Completing the methodologies by adding final refinements where necessary. 

• Developing synchronous applications related to the Work Package (WP) services host, especially 

in areas where this has not been implemented yet. 

• Operating the services within an interoperable environment, particularly ensuring 

communication with the relevant Work Packages (WP2, WP4) as required. 

• Providing comprehensive documentation of scenarios for the effective training and guidance of 

the pilots involved. This is crucial to maximise the benefits of the developed technologies and 

support them in achieving their objectives. 

• Ensuring the security of pilot and application data at every stage of development. 
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Appendix 
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Table 31: s3.4.2 - AHP matrix containing pairwise importance of each BPI. 
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BPI_1 1 2 4 3 2 5 6 5 4 4 3 2 3 4 3 4 5 

BPI_2 1/2 1 3 2 3 4 5 4 3 3 2 2 3 3 2 3 4 

BPI_3 1/4 1/3 1 2 1/2 6 7 6 5 5 4 3 4 5 4 5 6 

BPI_4 1/3 1/2 1/2 1 1/3 4 5 4 3 4 5 3 4 4 6 7 5 

BPI_5 1/2 1/3 2 3 1 4 5 4 3 3 4 2 3 3 2 3 4 

BPI_6 1/5 1/4 1/6 1/4 1/4 1 2 3 7 6 2 1 2 5 1 4 3 

BPI_7 1/6 1/5 1/7 1/5 1/5 1/2 1 2 6 5 1 1/2 1 4 1/2 3 2 

BPI_8 1/5 1/4 1/6 1/4 1/4 1/3 1/2 1 5 4 1 1/2 1 3 1/2 2 1 

BPI_9 1/4 1/3 1/5 1/3 1/3 1/7 1/6 1/5 1 7 1/2 1/3 1/2 6 1/3 4 3 

BPI_10 1/4 1/3 1/5 1/4 1/3 1/6 1/5 1/4 1/7 1 1/2 1/3 1/2 5 1/3 3 2 

BPI_11 1/3 1/2 1/4 1/5 1/4 1/2 1 1 2 2 1 1/2 1 4 5 6 4 

BPI_12 1/2 1/2 1/3 1/3 1/2 1 2 2 3 3 2 1 2 3 2 3 4 

BPI_13 1/3 1/3 1/4 1/4 1/3 1/2 1 1 2 2 1 1/2 1 3 2 4 3 
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BPI_14 1/4 1/3 1/5 1/4 1/3 1/5 1/4 1/3 1/6 1/5 1/4 1/3 1/3 1 1/2 2 2 

BPI_15 1/3 1/2 1/4 1/6 1/2 1 2 2 3 3 1/5 1/2 1/2 2 1 4 3 

BPI_16 1/4 1/3 1/5 1/7 1/3 1/4 1/3 1/2 1/4 1/3 1/6 1/3 1/4 1/2 1/4 1 2 

BPI_17 1/5 1/4 1/6 1/5 1/4 1/3 1/2 1 1/3 1/2 1/4 1/4 1/3 1/2 1/3 1/2 1 

 

 

Table 32: s3.4.2 - Calculated weights per BPI. (a) 

 

 

 

 

Table 33:  s3.4.2 - Calculated weights per BPI. (b) 

 BPI_1 BPI_2 BPI_3 BPI_4 BPI_5 BPI_6 BPI_7 BPI_8 BPI_9 

weights 0.14123193 0.11120199 0.11583311 0.10242537 0.09943315 0.05823796 0.04052578 0.03365667 0.03632785 

 BPI_10 BPI_11 BPI_12 BPI_13 BPI_14 BPI_15 BPI_16 BPI_17 

weights 0.02529783 0.04907615 0.05558917 0.03867374 0.01894081 0.04113634 0.01686202 0.01555013 
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